UC San Diego Health

Lung Cancer: Multidisciplinary Approach and Systemic Treatments

Joshua Boys M.D.

Associate Professor of Surgery

Division of Thoracic Surgery

University of California San Diego

New 9th Edition lung cancer staging

8th Edition TNM Categories

T/M	Label	N0	N1	N2	N3
	T1a	IA1	IIB	IIIA	IIIB
T1	T1b	IA2	IIB	IIIA	IIIB
	T1c	IA3	IIB	IIIA	IIIB
	T2a Inv	IB	IIB	IIIA	IIIB
T2	T2a >3-4	IB	IIB	IIIA	IIIB
	T2b >4-5	IIA	IIB	IIIA	IIIB
	T3 >5-7	IIB	IIIA	IIIB	IIIC
T3	T3 Inv	IIB	IIIA	IIIB	IIIC
	T3 Same Lobe Nod	IIB	IIIA	IIIB	IIIC
	T4 >7	IIIA	IIIA	IIIB	IIIC
T4	T4 Inv	IIIA	IIIA	IIIB	IIIC
	T4 Ipsi Nod	IIIA	IIIA	IIIB	IIIC
	M1a PI Dissem	IVA	IVA	IVA	IVA
M1	M1a Contr Nod	IVA	IVA	IVA	IVA
IVII	M1b Single Les	IVA	IVA	IVA	IVA
	M1c Mult Les	IVB	IVB	IVB	IVB

9th Edition TNM Categories

		N0	N1	N2		N3
T/M	Description		INI	N2a	N2b	
	T1a ≤1 cm	IA1	IIA	IIB	IIIA	IIIB
T1	T1b >1 to ≤2 cm	IA2	IIA	IIB	IIIA	IIIB
	T1c >2 to ≤3 cm	IA3	IIA	IIB	IIIA	IIIB
	T2a Visceral pleura / central invasion	IB	IIB	IIIA	IIIB	IIIB
T2	T2a >3 to ≤4 cm	IB	IIB	IIIA	IIIB	IIIB
	T2b >4 to ≤5 cm	IIA	IIB	IIIA	IIIB	IIIB
	T3 >5 to ≤7 cm	IIB	IIIA	IIIA	IIIB	IIIC
Т3	T3 Invasion	IIB	IIIA	IIIA	IIIB	IIIC
	T3 Same lobe tumor nodule	IIB	IIIA	IIIA	IIIB	IIIC
	T4 >7 cm	IIIA	IIIA	IIIB	IIIB	IIIC
T4	T4 Invasion	IIIA	IIIA	IIIB	IIIB	IIIC
	T4 Ipsilateral tumor nodule	IIIA	IIIA	IIIB	IIIB	IIIC
	M1a Pleural/pericardial dissemination	IVA	IVA	IVA	IVA	IVA
	M1a Contralateral tumor nodule	IVA	IVA	IVA	IVA	IVA
M1	M1b Single extrathoracic lesion	IVA	IVA	IVA	IVA	IVA
	M1c1 Multiple lesions, 1 organ system	IVB	IVB	IVB	IVB	IVB
	M1c2 Multiple lesions, >1 organ system	IVB	IVB	IVB	IVB	IVB

Results: N2 is subdivided into single- and multistation N2, and M1c is subdivided into single- and multiorgan system M1c, resulting in a rearrangement of T and N categories included in the stage groups IIA, IIB, IIIA, and IIIB.

Lung Cancer Screening

Summary Statement

Adults aged 50 to 80 years who have a 20 pack-year smoking history and currently smoke or have quit within the past 15 years

- 1. Annual screening for lung cancer with low-dose computed tomography (LDCT)
- 2. Adults aged 50 to 80 years
- have a 20 pack-year smoking history and currently smoke or have quit within the past 15 years.

4. Screening should be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery.

LDCT Reporting based on Lung Rads

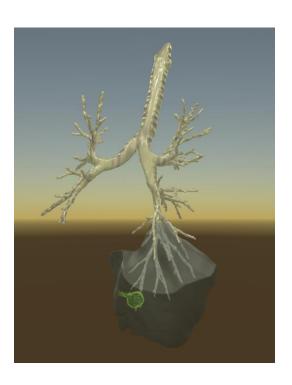
Refer at 8mm

3	Probably Benign Based on imaging features or behavior Estimated Population Prevalence: 9%	Solid nodule: • ≥ 6 to < 8 mm (≥ 113 to < 268 mm³) at baseline OR • New 4 mm to < 6 mm (34 to < 113 mm³) Part solid nodule: • ≥ 6 mm total mean diameter (≥ 113 mm³) with solid component < 6 mm (< 113 mm³) at baseline OR • New < 6 mm total mean diameter (< 113 mm³) Non solid nodule (GGN): • ≥ 30 mm (≥ 14,137 mm³) at baseline or new Atypical pulmonary cyst: (see note 12) • Growing cystic component (mean diameter) of a thick-walled cyst Category 4A lesion that is stable or decreased in size at 3-month follow-up CT (excluding airway nodules)	- 6-month LDCT
4A	Suspicious Estimated Population Prevalence: 4%	Solid nodule: • ≥ 8 to < 15 mm (≥ 268 to < 1,767 mm³) at baseline OR • Growing < 8 mm (< 268 mm³) OR • New 6 to < 8 mm (113 to < 268 mm³) Part solid nodule: • ≥ 6 mm total mean diameter (≥ 113 mm³) with solid component ≥ 6 mm to < 8 mm (≥ 113 to < 268 mm³) at baseline OR • New or growing < 4 mm (< 34 mm³) solid component Airway nodule, segmental or more proximal - at baseline (see note 11) Atypical pulmonary cyst: (see note 12) • Thick-walled cyst OR • Multilocular cyst at baseline OR • Thin- or thick-walled cyst that becomes multilocular	3-month LDCT; PET/CT may be considered if there is a ≥ 8 mm (≥ 268 mm³) solid nodule or solid component
4B	Very Suspicious Estimated Population Prevalence: 2%	Airway nodule, segmental or more proximal - stable or growing (see note 11) Solid nodule: • ≥ 15 mm (≥ 1767 mm³) at baseline OR • New or growing ≥ 8 mm (≥ 268 mm³) Part solid nodule: • Solid component ≥ 8 mm (≥ 268 mm³) at baseline OR • New or growing ≥ 4 mm (≥ 34 mm³) solid component Atypical pulmonary cyst: (see note 12) • Thick-walled cyst with growing wall thickness/nodularity OR • Growing multilocular cyst (mean diameter) OR • Multilocular cyst with increased loculation or new/increased opacity (nodular ground glass, or consolidation) Slow growing solid or part solid nodule that demonstrates growth over multiple screening exams (see note 8)	Referral for further clinical evaluation Diagnostic chest CT with or without contrast; PET/CT may be considered if there is a ≥ 8 mm (≥ 268 mm³) solid nodule or solid component; tissue sampling; and/or referral for further clinical evaluation Management depends on clinical evaluation, patient preference, and the probability of malignancy (see note 13)
4X	Estimated Population Prevalence: < 1%	Category 3 or 4 nodules with additional features or imaging findings that increase suspicion for lung cancer (see note 14)	

PATHOLOGIC INITIAL EVALUATION DIAGNOSIS OF NSCLC

- Pathology review^a
- H&P (include performance status + weight loss)^b
- CT chest and upper abdomen with contrast, including adrenals
- CBC, platelets

NSCLC →


- Chemistry profile
- Smoking cessation advice, counseling, and pharmacotherapy
- ► Use the 5 A's Framework: Ask, Advise, Assess, Assist, Arrange http://www.ahrq.gov/clinic/ tobacco/5steps.htm
- Integrate palliative care^c
 (See NCCN Guidelines for Palliative Care)
- For tools to aid in the optimal assessment and management of older adults, see the NCCN Guidelines for Older Adult Oncology

CLINICAL STAGE

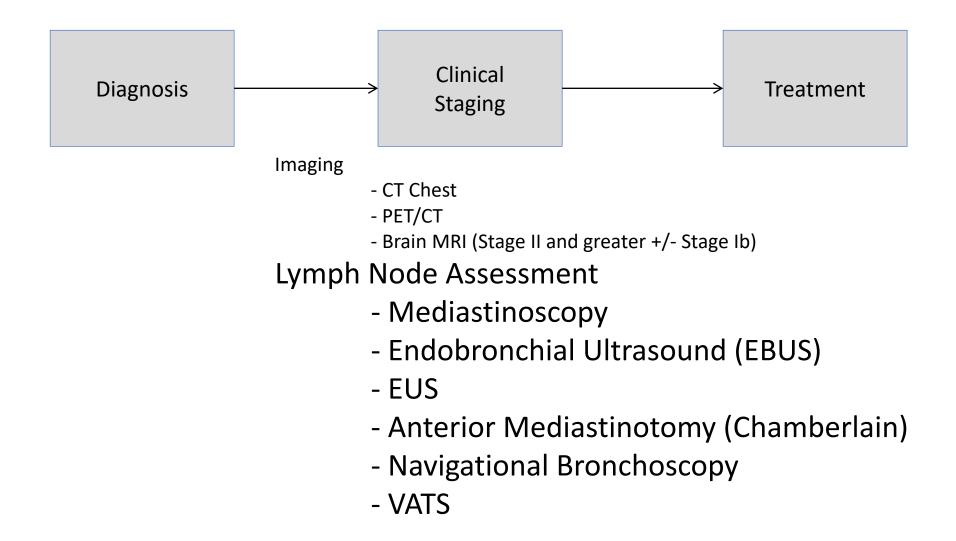
á	Stage IA, peripheral ^d (T1abc, N0)	See Pretreatment Evaluation (NSCL-2)
<u>†</u>	Stage IB, peripheral ^d (T2a, N0); Stage I, central ^d (T1abc–T2a, N0); Stage II (T1abc–T2ab, N1; T2b, N0); Stage IIB (T3, N0) ^e ; Stage IIIA (T3, N1)	See Pretreatment Evaluation (NSCL-3)
,	Stage IIB ^f (T3 invasion, N0); Stage IIIA ^f (T4 extension, N0–1; T3, N1; T4, N0–1)	See Pretreatment Evaluation (NSCL-5)
, ,	Stage IIIA ^f (T1–2, N2); Stage IIIB (T3, N2)	See Pretreatment Evaluation (NSCL-8)
•	Separate pulmonary nodule(s) (Stage IIB, IIIA, IV)	See Pretreatment Evaluation (NSCL-8)
	Multiple lung cancers	See Treatment (NSCL-10)
	Stage IIIB ^f (T1−2, N3); Stage IIIC (T3, N3)	See Pretreatment Evaluation (NSCL-12)
*	Stage IIIB ^f (T4, N2); Stage IIIC (T4, N3)	See Pretreatment Evaluation (NSCL-13)
4	Stage IVA (M1a) ^c (pleural or pericardial effusion)	See Pretreatment Evaluation (NSCL-13)
1	Stage IVA (M1b) ^c →	See Pretreatment Evaluation (NSCL-14)
¥	Stage IVB (M1c) ^c disseminated metastases ————	See Systemic Therapy (NSCL-18)

Quality Metrics to Obtain Optimal Survival and Quality of Life

Name it

Stage it

Treat it



Approach

- Transthoracic Needle Biopsy
- Bronchoscopy/EBUS Robotic
- Surgical Biopsy (wedge resection)

Clinical Staging

Lymph node assessment

Z0050 trial

- 303 patients had PET after routine staging
- NPV of PET for mediastinal involvement: 87%
- False positive rate: 43%

TABLE 3. Lymph node status comparing PET with final stage (all eligible patients; n = 302)*

	Fi	nal stage (No. patients	s)
By PET	N0/N1	N2/N3	Total
N0/N1	191	29	220
N2/N3	36	46	82
Total	227	75	302

PPV, Positive predictive value; NPV, negative predictive value.

^{*}Final stage equals nodal stage as determined radiographically or pathologically, including patients who did not have nodal status confirmed with biopsy, mediastinoscopy, or surgical resection. For N2/N3 disease: sensitivity = 61%; specificity = 84%; PPV = 56%; NPV = 87%.

Lymph node staging indication

- Selective approach is considered standard of care
- T2 (>3cm) or larger
- Pathologically enlarged lymph nodes > 1cm in short axis on CT
- Mediastinal or Hilar lymph nodes with PET SUV >2.5
- Centrally located tumors

Supraclavicular zone

1 Low cervical, supraclavicular, and sternal notch nodes

Superior Mediastinal Nodes

Upper zone

- 2R Upper Paratracheal (right)
- 2L Upper Paratracheal (left)
- 3a Pre-vascular
- 3p Retrotracheal
- 4R Lower Paratracheal (right)
- 4L Lower Paratracheal (left)

Aortic Nodes

AP zone

- 5 Subaortic
- 6 Para-aortic (ascending aorta or phrenic)

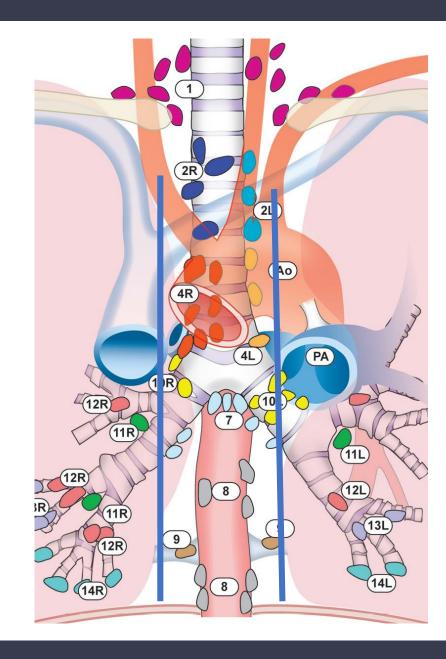
Inferior Mediastinal Nodes

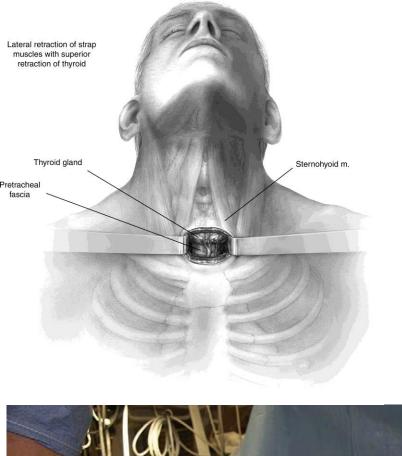
Subcarinal zone

7 Subcarinal

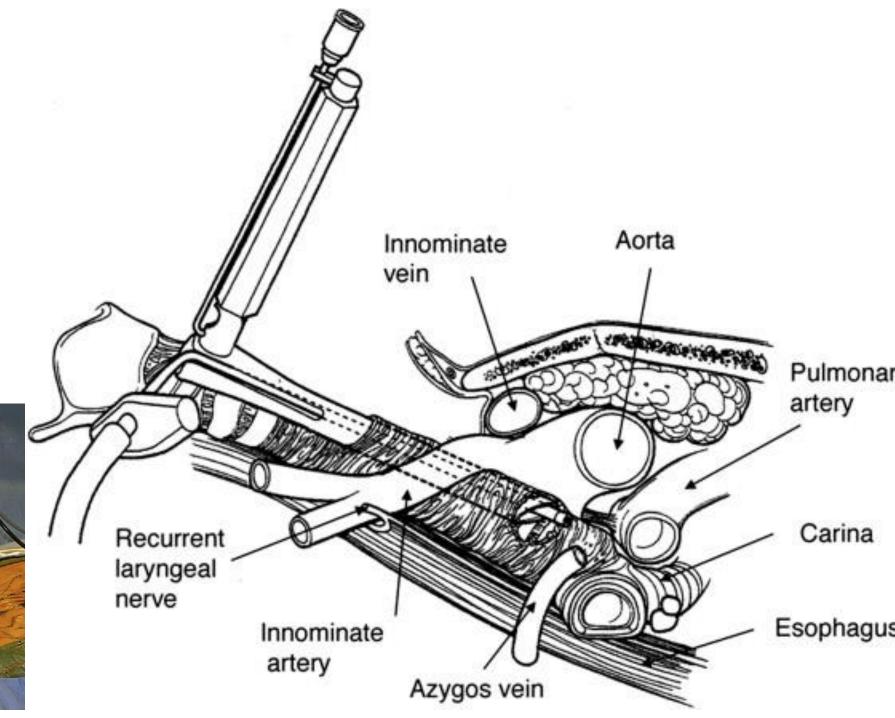
Lower zone

- 8 Paraesophageal (below carina)
- 9 Pulmonary ligament

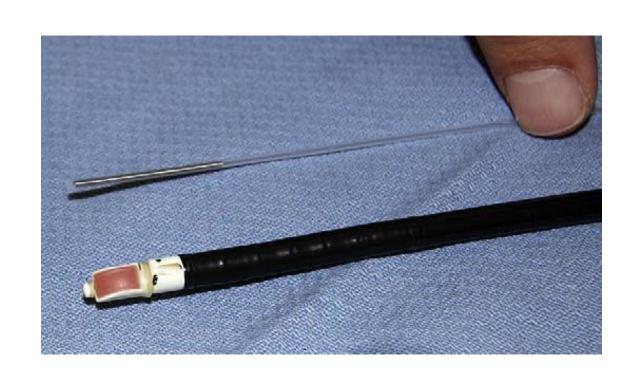

N₁ Nodes

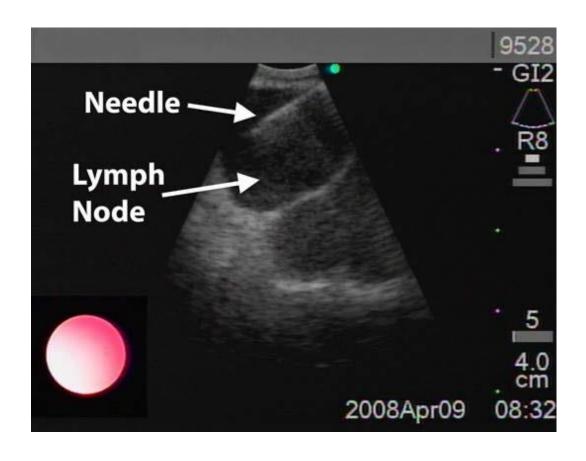

Hilar/Interlobar zone

- O 10 Hilar
- 11 Interlobar


Peripheral zone

- 12 Lobar
- 13 Segmental
- 14 Subsegmental

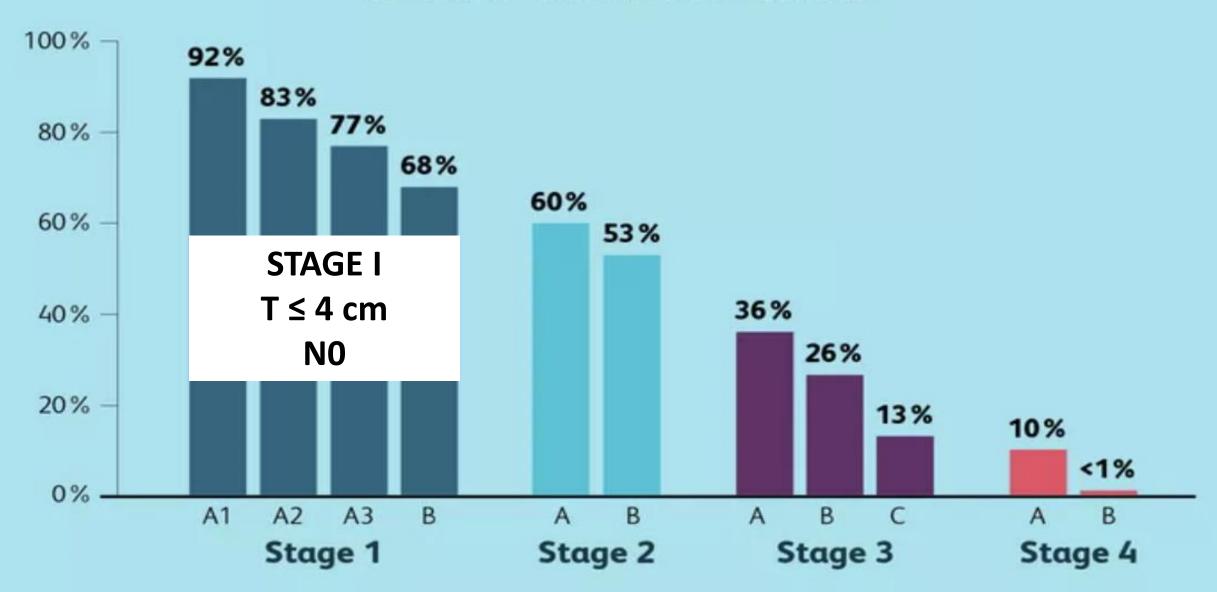




Endobronchial Ultrasound (EBUS) w/ FNA

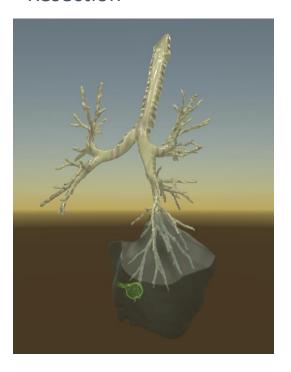
Treatment Strategy

Stage I: Resection only (LACE metanalysis HR 1.4)

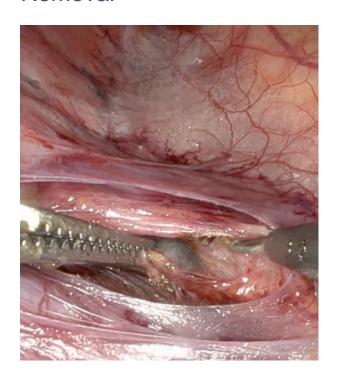

Stage II: Resection with adjuvant or neoadjuvant chemotherapy +/- IO

Stage IIIA (N0,N1) Resection with Neo adjuvant chemotherapy+ IO

Stage IIIA (N2) definitive chemoradiotherapy vs. neoadjuvant chemo + IO then resection (lobectomy)


Stage IIIB+ definitive chemoradiotherapy

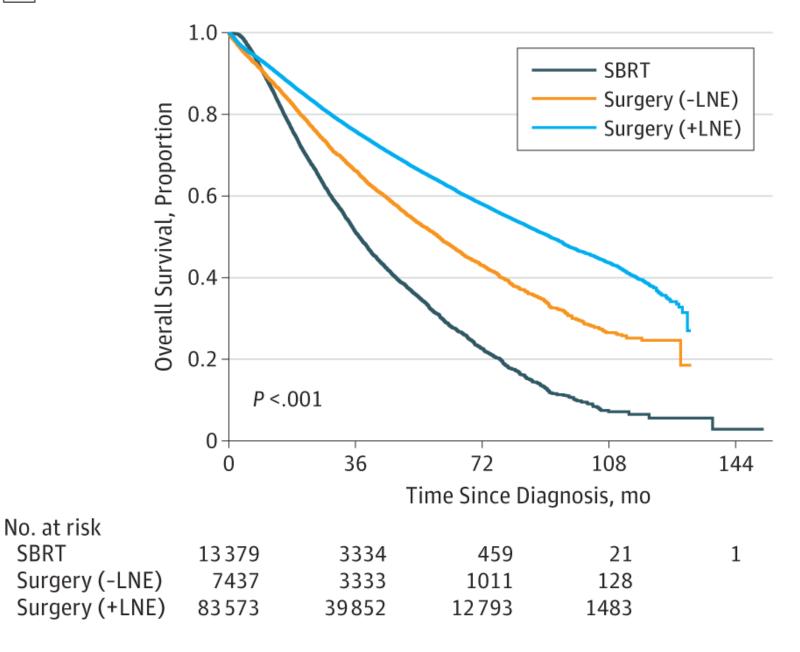
Non-Small Cell Lung Cancer: 5-Year Survival Rates



Quality Metrics to Obtain Optimal Survival and Quality of Life

Adequate Lung Resection

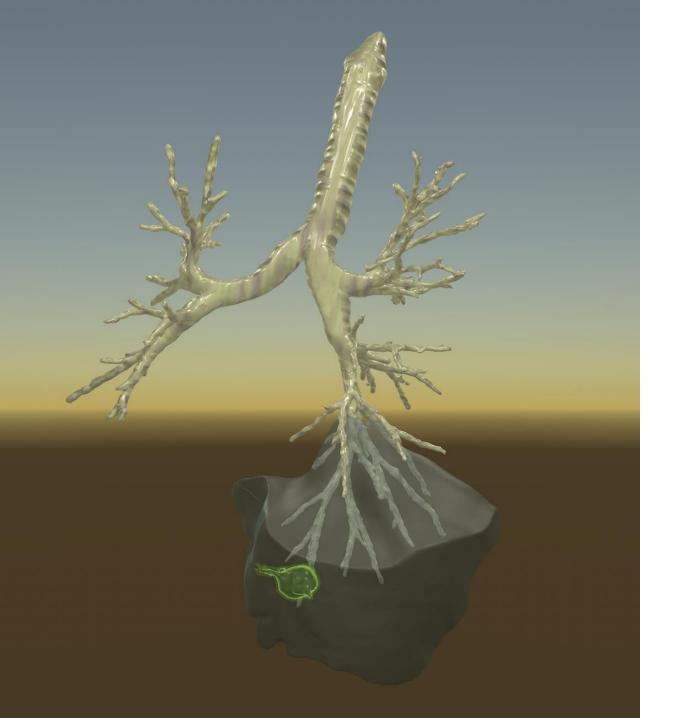
Adequate Lymph Node Removal



Minimally Invasive Approach

Surgery vs. Radiation for Early Stage NSCLC

- Large NCDB study n = 104K
 - Surgery with regional lymph node exam vs. SBRT
- Endpoint: Long term overall survival
- RESULTS:
 - Lobectomy with mediastinal LN dissection (>10) was associated with better longterm survival
 - Pneumonectomy was not associated with reduced mortality when:
 - No nodes were examined
 - Stage T2-3
 - When > 15 nodes taken for stage 1 disease in patients younger than 80
- Conclusion: Surgery with mediastinal lymph node excision was associated with the best long-term OS



Basic surgical evaluation

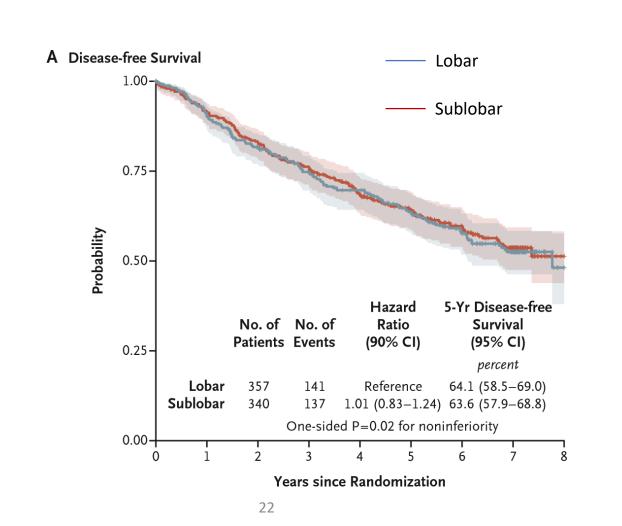
Can the patient

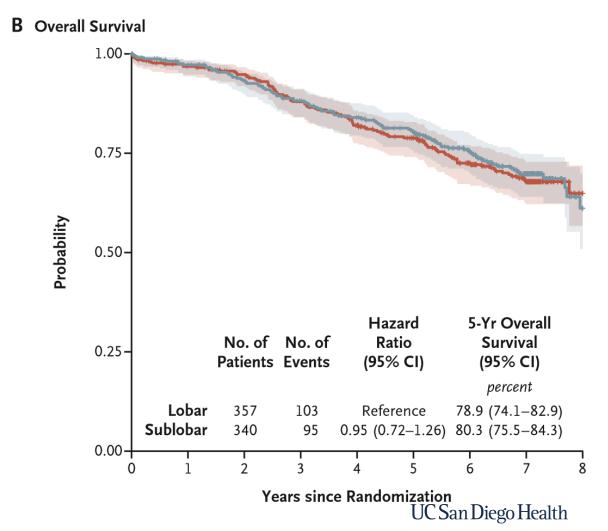
- 1. Walk up 2 flights of stairs without stopping to catch their breath
- 2. or without chest pain

Lung Resection

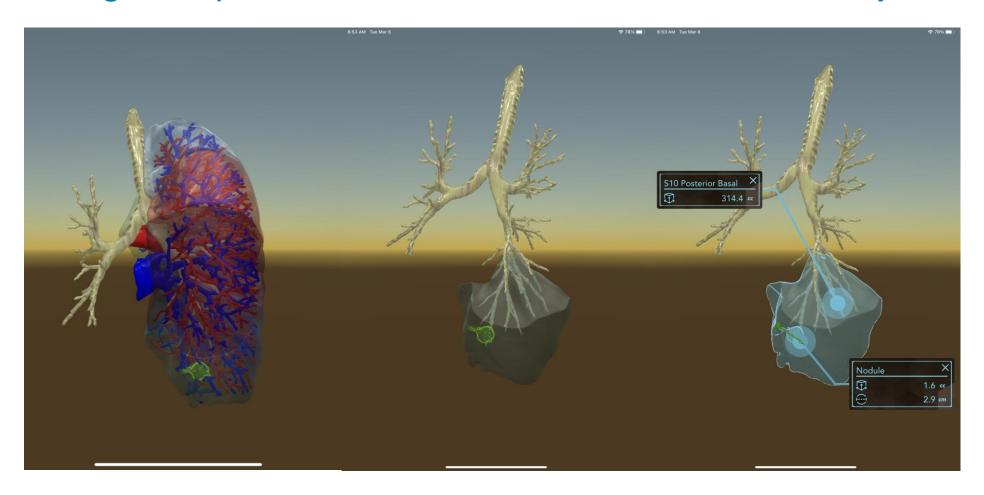
- 1. Lobar vs. Sublobar
- 2. Post neoadjuvant therapy IB

Lobar or Sublobar Resection for Peripheral Stage IA Non-Small-Cell Lung Cancer

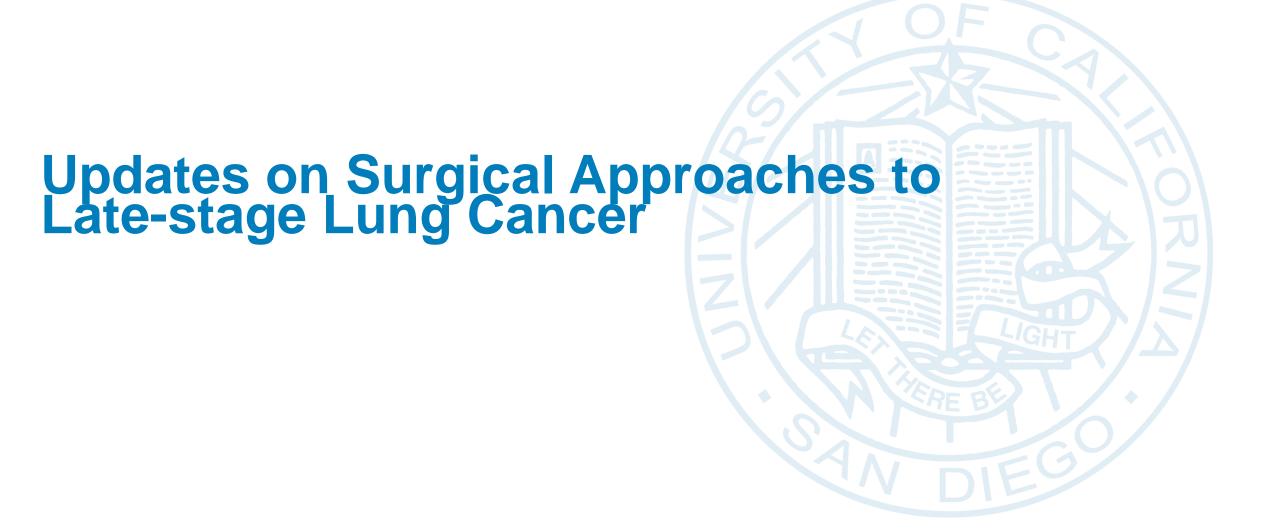

Altorki et al. N Engl J Med 2023;388:489-98. DOI: 10.1056/NEJMoa2212083


Method

- International multicenter RCT phase 3 trial
- Patients with clinical stage T1aN0 (Peripheral < 2.0cm)
 - Randomized to lobectomy or sublobar (wedge (59%) or segmentectomy)
 - Choice of surgical approach (open, vats or robotic) per surgeon
 - No mandate on LN dissection beyond sampling of major hilar and 2 mediastinal LN stations
- End points
 - Primary: Disease Free survival
 - Secondary: Overall Survival, recurrrence and expiratory flow at 6 months
- Aim: Determine if sublobar is non-inferior to lobectomy


Lobar or Sublobar Resection for Peripheral Stage IA Non-Small-Cell Lung Cancer

Altorki et al. N Engl J Med 2023;388:489-98. DOI: 10.1056/NEJMoa2212083



3D Modeling to Improve Definition of the Sublobar Anatomy

UCSan Diego Health

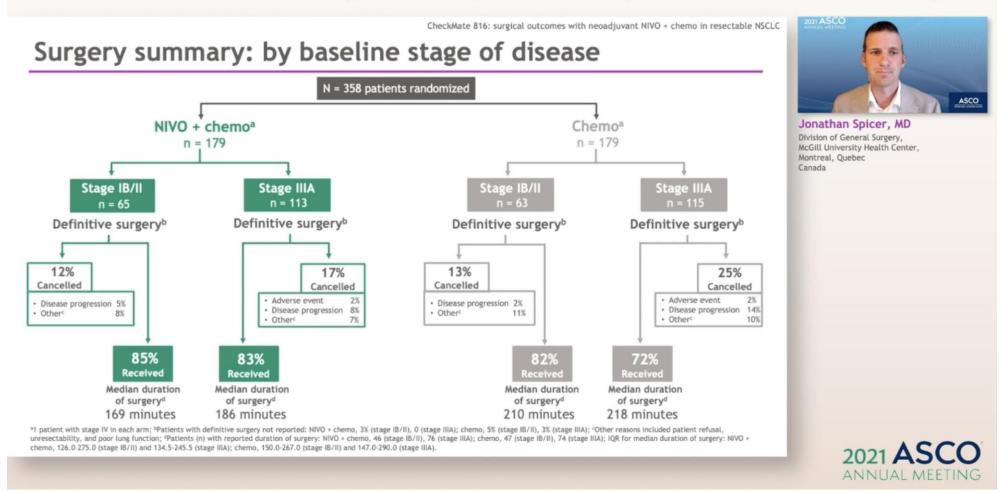
UC San Diego Health

Checkmate 816

ORIGINAL ARTICLE

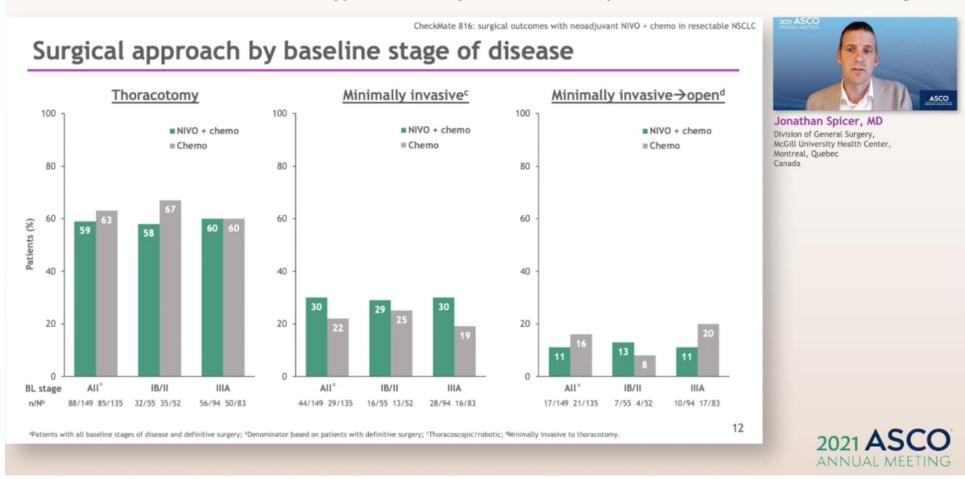
Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer

P.M. Forde, J. Spicer, S. Lu, M. Provencio, T. Mitsudomi, M.M. Awad, E. Felip, S.R. Broderick, J.R. Brahmer, S.J. Swanson, K. Kerr, C. Wang, T.-E. Ciuleanu, G.B. Saylors, F. Tanaka, H. Ito, K.-N. Chen, M. Liberman, E.E. Vokes, J.M. Taube, C. Dorange, J. Cai, J. Fiore, A. Jarkowski, D. Balli, M. Sausen, D. Pandya, C.Y. Calvet, and N. Girard, for the CheckMate 816 Investigators*

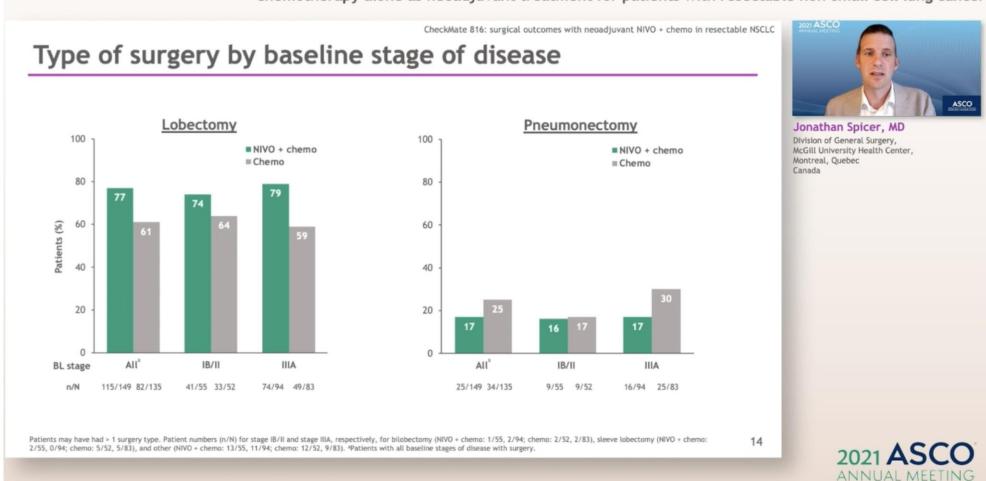

Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer

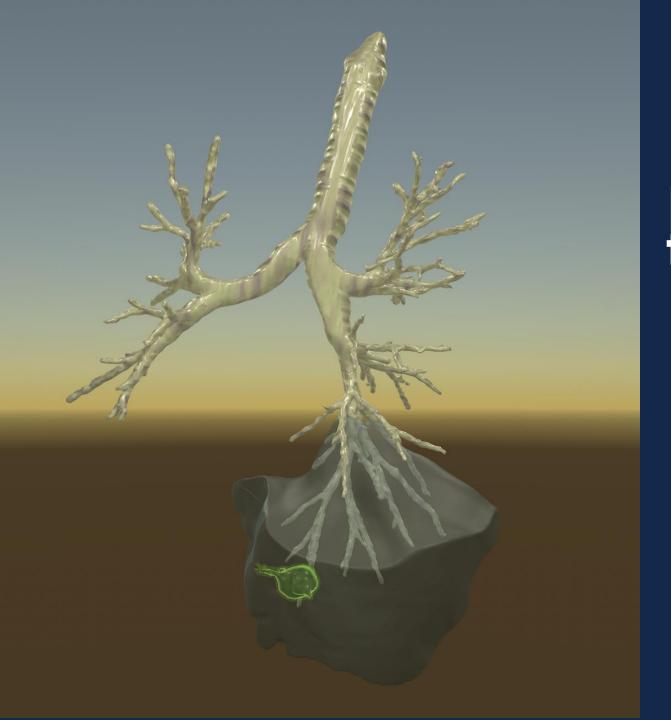
Forde et al. N Engl J Med 2022;386:1973-85. DOI: 10.1056/NEJMoa2202170

- Phase III RCT
 - NSCLC IB-IIIA
 - Nivolumab+platinum based chemo vs. Chemo alone followed by surgery
 - How did this change our surgery?


What does that mean for us? IMPROVED surgical outcomes

Surgical outcomes from the phase 3 CheckMate 816 trial: nivolumab + platinum-doublet chemotherapy vs chemotherapy alone as neoadjuvant treatment for patients with resectable non-small cell lung cancer

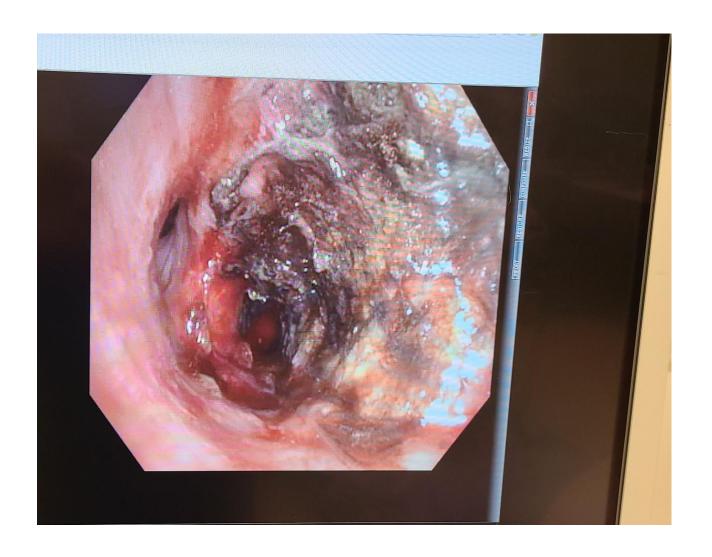

IMPROVED surgical outcomes


Surgical outcomes from the phase 3 CheckMate 816 trial: nivolumab + platinum-doublet chemotherapy vs chemotherapy alone as neoadjuvant treatment for patients with resectable non-small cell lung cancer

IMPROVED surgical outcomes

Surgical outcomes from the phase 3 CheckMate 816 trial: nivolumab + platinum-doublet chemotherapy vs chemotherapy alone as neoadjuvant treatment for patients with resectable non-small cell lung cancer

Post neoadjuvant therapy


- 1. No difference in delay or cancellation
- 2. More minimally invasive cases
- 3. Fewer pneumonectomies

UC San Diego Health

PART III The role of surgery in stage IV NSCLC Diagnosis, Staging and Management

Stage IV bronchoscope management

- Flexible or Rigid broncoscpy
 - Nd:yag laser
 - Stent
 - Cryo

UC San Diego Health

Thoracoscopy

40% of patients with cytologically negative pleural effusions were proven non-malignant by VATS

Routine VATS finds unsuspected pleural studding in 4% of cases

Thoracoscopy interventions

Pleural biopsy for confirmation of Stage IV disease

Pleurodesis

Tunneled catheter placement

Pericardial effusion drainage

Thank You

Joshua Boys M.D.

UC San Diego Health

Thoracic Surgery

T: 858-657-7777

C:805-844-6746

jboys@health.ucsd.edu