Chronic Low Back Pain

Tim Furnish, MD Clinical Professor Center For Pain Medicine UC San Diego Department of Anesthesia February 2025

Disclosures

- Division Educational Grants:
 - Medtronic, Boston Scientific, Abbott, Nevro Inc
- Research Grant:
 - Cohen Family Foundation

CLBP Topics

Prevalence

Causes of CLBP

Presentation/Evaluation of CLBP

Treatments Conservative Treatments Pharmacologic Treatments Interventional

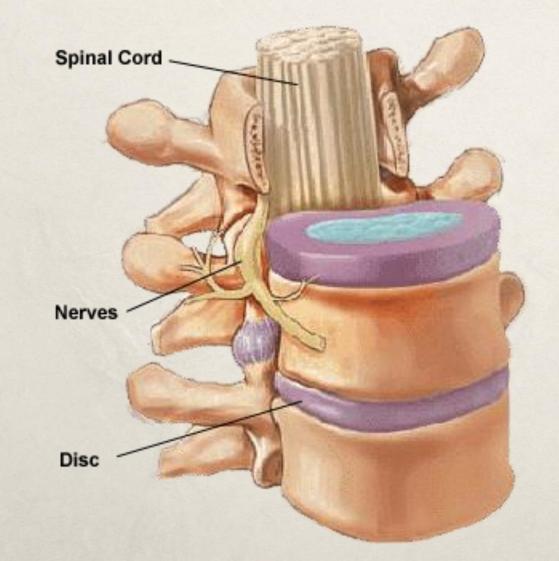
Therapies

Prevalence of LBP

- Annual prevalence US adults 10-30%
- Lifetime prevalence 65-80%

Psychosocial Factors & CLBP

- Factors associated with development of chronic back pain
 - Depression/anxiety
 - Somatization
 - PTSD
 - Job dissatisfaction/loss of ability to work
 - Disability claim/legal claims
 - Substance abuse
 - Financial stress


Imaging/Referral

- Choosing Wisely (AAFP): Avoid imaging <6 weeks and no red flags
 - Severe/progressive neurologic deficits
 - Saddle anesthesia, bowel/bladder changes, weakness
 - * Fever
 - History of osteoporosis/cancer/steroid use
 - * Trauma
 - * IVDU/concern for osteomyelitis

- Failed Conservative Therapy (rest, PT, NSAIDS)
 - * MRI:
 - * Suspected spinal stenosis with neurogenic claudication
 - * Significant LE weakness on exam
 - * Concern for malignancy/infection
 - * Patient wants surgery consult
 - * Pain Consult:
 - Axial/radicular pain without urgent need for surgery or red flags
 - * Surgery Consult:
 - * Severe CC stenosis, instability on flexext films, significant/progressive weakness, tumor/infection on imaging, failed multimodal conservative therapy

Sources of Low Back Pain

- Multiple structures in the low back
 - Vertebral body
 - Nerve roots
 - Thoracolumbar fascia/ligaments
 - Joints
 - Facet and sacroiliac joint
 - Discs
 - Muscle

CLBP Types

- Nociceptive:
 - Vertebral compression fx
 - Ankylosing spondylitis
 - Facet arthropathy

• Nociplastic:

- Fibromyalgia
- Non-specific chronic low back pain

Nociceptive Pain

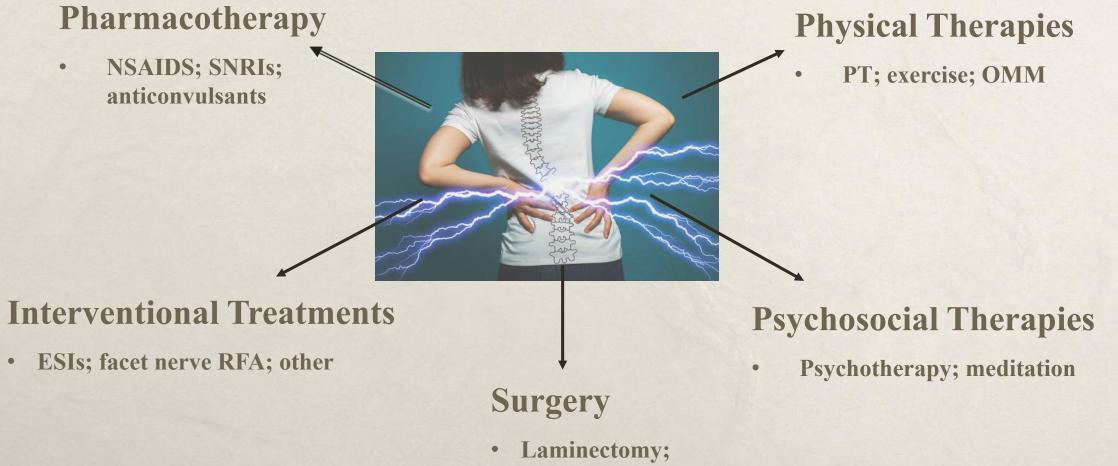
• Nociceptor activation due to tissue damage/ inflammation

Neuropathic Pain

• Primary lesion or dysfunction in the nervous system

Nociplastic Pain

• Maintained by central or peripheral sensitization


• Neuropathic:

- Radiculopathy
- Spinal stenosis with claudication
- Spinal cord injury
- MS

• Mixed:

- Post-op pain
- Failed Back Surgery
 Pain
- DDD
- Chronic low back pain with known pathology

Treatment Options

microdiscectomy; fusion

▶ Pain Rep. 2022 Sep 30;7(5):e1019. doi: <u>10.1097/PR9.0000000000001019</u> [2]

Evidence-based interventions to treat chronic low back pain: treatment selection for a personalized medicine approach

>/= Mod/Mod Intervention Evidence **Effect Size** Type Psychological/ Acceptance & Small High Commitment (ACT) Behavioral Mindfulness Low-Mod Small-Mod CBT Mod Mod Spinal Manipulation Small function & Manual/ Low-Mod Movement pain Walking/Gen Mod Mod **Exercise** Program PT led, condition Mod Large dependent exercise Complementary Small-Mod Low-Mod Acupuncture Low Mod Acupressure

Mauck MC, et al. Evidence-based interventions to treat chronic low back pain: treatment selection for a personalized medicine approach. Pain Rep. 2022

Evidence/Effect Size

Evidence/Effect Size

▶ Pain Rep. 2022 Sep 30;7(5):e1019. doi: <u>10.1097/PR9.0000000000001019</u> [Z]

Evidence-based interventions to treat chronic low back pain: treatment selection for a personalized medicine approach

Туре	Intervention	Evidence	Effect Size	>/= Mod/Mod
Interventional	Epidural CSI	Mod	Mod	
	Lumbar RFA	Mod	Mod	
	Basivertebral Nerve Ablation	Mod	Mod	
Medications	SNRIs	High	Mod	
	NSAIDS	Low-Mod	Mod	
	Muscle Relaxants	Low	None	
	SSRIs/TCA	Mod	None	
	Anticonvulsants	Low	Small-Mod	

Mauck MC, et al. Evidence-based interventions to treat chronic low back pain: treatment selection for a personalized medicine approach. Pain Rep. 2022

Mechanism of Exercise

- * Strengthens back muscles and increase flexibility
- * Increase blood supply to the spine muscles and joints and intervertebral discs thus minimizing injury and improving repair
- * Improve mood and alter the perception of pain
- No clear evidence for "core strengthening" and variable evidence for specific types of exercise

Chronic LBP Systematic Review

-2017 Ann Intern Med

Table 3. Pharmacologic Therapies Versus Placebo for Chronic Low Back Pain

Drug	Pain								
	Magnitude of Effect	Evidence	SOE						
Acetaminophen	No evidence	-	-						
NSAIDs	Small to moderate	1 SR (4 RCTs), 2 RCTs	Moderate						
Opioids (strong opioids)	Small	1 SR (6 RCTs), 4 RCTs	Moderate						
Opioids (buprenorphine patch or sublingual)	Small	3 RCTs	Low						
Tramadol	Moderate	1 SR (5 RCTs), 2 RCTs	Moderate						
Skeletal muscle relaxants	Unable to estimate	3 RCTs	Insufficient						
Benzodiazepines: tetrazepam	Failure to improve at 10-14 d: relative risk, 0.71 (95% CI, 0.54-0.93)	1 SR (2 RCTs)	Low						
Tricyclic antidepressants	No effect	1 SR (4 RCTs)	Moderate						
Antidepressants: selective serotonin reuptake inhibitors	No effect	1 SR (3 RCTs)	Moderate						
Antidepressants: duloxetine	Small	3 RCTs	Moderate						
Gabapentin/pregabalin	Unable to estimate	2 RCTs	Insufficient						

Roger Chou, Richard Deyo, Janna Friedly, et al. <u>Systemic</u> <u>Pharmacologic</u> <u>Therapies for Low</u> <u>Back Pain: A</u> <u>Systematic Review</u> for an American <u>College of Physicians</u> <u>Clinical Practice</u> <u>Guideline</u>. Ann Intern Med.2017;166:480-492.

Guidelines for CLBP

Price, M.R., Cupler, Z., Hawk, C. *et al.* Systematic review of guideline-recommended medications prescribed for treatment of low back pain. *Chiropr Man Therap* **30**, 26 (2022)

Table 5 Evidence table—chronic low back pain recommendations by guideline

	ACP [67]	DHA [72]	GSCI [61]	ICSI [69]	KCE [70]	NASS [27]	NICE [71]	TOP [73]	VA/DoD [68]
Acetaminophen									
Antibiotics									
Anticonvulsants									
Antidepressants									
Benzodiazepines									
NSAIDs									
Opioids									
Oral Steroids									
Skeletal Muscle									
Relaxants									
Atypical Opioids									
(Tramadol)									

Green = Recommended for, Yellow = inconclusive, Red= Recommended against, Gray = not reviwed ACP, American College of Physicians; DHA, Danish Health Authority; GSCI, Global Spine Care Initiative; ICSI,

Institute of Clinical Systems Improvement; KCE, Belgian Health Care Knowledge Centre; NASS, North American

Spine Society; NGC, National Guideline Centre; NICE, National Institute for Health and Care Excellence; NSAIDs,

Non-steroidal anti-inflammatory drugs; TOP, Toward Optimized Practice; VA/DoD, Veterans Affairs/Department

of Defense

Fig. 2

Author, Year, Drug		Drug		P	acebo		Pain int	ensity pos	t-treatmen	nt	Mea	an differ	ence [95% C
Parallel	Mean	SD	Sample	Mean	SD	Sample							
Atkinson 2007 desipramine	28.75	15.37	30	31	14.07	11	•		-		2.86%	-2.25	-12.65, 8.1
Atkinson 2007 fluoxetine	35.5	13.92	31	31	14.07	11					3.32%	4.50	-5.10, 14.1
Atkinson 1999 maprotiline	34	23.6	20	38.5	23.15	16			-		1.36%		-19.88, 10.8
Atkinson 1999 paroxetine	41	20	22	38.5	23.15	16					1.69%	2.50	-11.26, 16.2
	-12.95	20	38	-4.55	17.15	40	-	-			4.36%		-16.65, -0.1
Dickens 2000 paroxetine	57	23.8	44	57	24.3	48	-		_		3.179		[-9.84, 9.8
Goodkin 1990 trazodone	53.4	29.9	19	58.8	26.2	20			-		1.05%		-23.02, 12.2
Gould 2020 designamine	37.75	28.15	37	43.6	27.45	33					1.87%		-18.91, 7.2
Jenkins 1976 imipramine	36	34	23	38	32	21			•		0.85%		-21.56, 17.5
Konno 2016 duloxetine	-24.3	15.9	209	-19.6		200					18.79%		-7.75, -1.6
					15.56				-		0.83%		
NCT01225068 2013 milnacipran	31.3	26.4	16	24.8	32.5	19	F						-13.37, 26.3
Skljarevski 2010a duloxetine 60-120mg	-20.8	21.07	111	-13	20.46	116	-	-			8.86%		-13.20, -2.4
Skljarevski 2009 duloxetine 20mg	-17.9	22.45	56	-18.7	23.28	37			_		3.41%		-8.66, 10.2
Skljarevski 2009 duloxetine 60mg	-25	22.86	108	-18.7	23.28	37	-				4.07%		-14.88, 2.2
Skljarevski 2009 duloxetine 120mg	-24.5	22.86	108	-18.7	23.28	38	⊢				4.14%		-14.29, 2.6
Skljarevski 2010b duloxetine 60mg fixed		20.95	195	-16.5	21.16	199					12.96%		-10.16, -1.8
Urquhart 2018 amitriptyline	28.9	20.31	61	37.1	24.16	57	-				4.57%		-16.23, -0.1
RE Model for Subgroup ($t^2 = 0.00$, Q = 11.63, df	= 16, p = 1	0.77; I ² =	0.0%)					•				-4.79	[-6.55, -3.0
Crossover													
Katz 2005 bupropion	32.5	19.3	21	34.2	18.6	23		_			9.76%	-1.70	[-6.77, 3.3
Schliessbach 2018 imipramine	26	NA	50	25	NA	50		-			9.00%		-5.15, 5.5
Schukro 2016 duloxetine	41	29	25	60	27	25 ⊢	_	_ · T				-18.00 [-28.00, -8.0
RE Model for Subgroup ($\tau^2 = 73.26$, Q = 10.26, d				00	21	20					0.0010		[-16.20, 4.7
RE Model for All Studies ($\tau^2 = 2.20$, Q =	22.85, 0	tf = 19,	p = 0.24;	l ² = 13.7	%)			•			100.00%	-4.33	-6.15, -2.5 [-7.76, -0.8
95% Prediction Interval						_		_					[-7.70, -0.8
							1						
						-30	-15	ø	15	30			
						Favo	rs drug	1	Favors	olaceb	0		

Effect of antidepressants compared to placebo on pain intensity (0–100 scale) for patients with LBP. Negative values for mean outcomes indicate change from baseline. Negative values for mean difference indicate effect favors drug compared to placebo. NA= group SD data not available; between-group summary statistics used in meta-analysis

Antidepressants for Back Pain

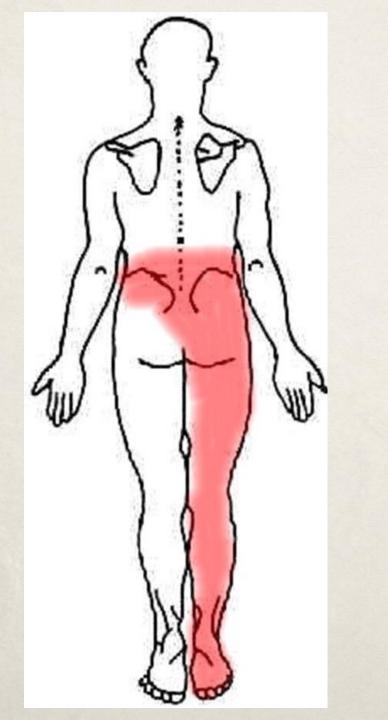
- Pain reduction 4.33 pts on 100 pt scale
- Duloxetine & Nortriptyline Best Evidence

Ferraro MC *et al.* Efficacy, acceptability, and safety of antidepressants for low back pain: a systematic review and metaanalysis. *Syst Rev* **10**, 62 (2021)

Interventional Pain Therapies

- * Interventional
- Epidural Steroid Injections
- Radiofrequency Ablation
- Minimally Invasive
 Lumbar Decompression
- Basivertebral Nerve
 Ablation
- Sacroiliac Joint Injections

- * Implants
- Spinal Cord Stimulator


Back Pain: Axial vs Radicular

Radicular Pain

- Radiculopathy: nerve root impingement
- Lumbar spinal stenosis: neurogenic claudication
- Mimics of radiculopathy: piriformis syndrome, SI joint dysfunction, peripheral neuropathy

Spinal Pain

- Facet joint arthropathy
- Degenerative Disc Disease/Discogenic/Vertebrogenic pain
- Muscle Spasm/myofascial pain
- Vertebral compression fracture
- Sacroiliac joint dysfunction
- Lumbar spinal stenosis

Epidural Steroid Injections

- * Targeted injection of steroids
- * Radicular Pain
- * Lumbar Spinal Stenosis
- * Variable duration of relief

Transforaminal approach through the intervertebral foramen

> Caudal approach through the sacral hiatus

Translaminar approach through the interlaminar space

Epidural Steroid Injections: Risks & Benefits

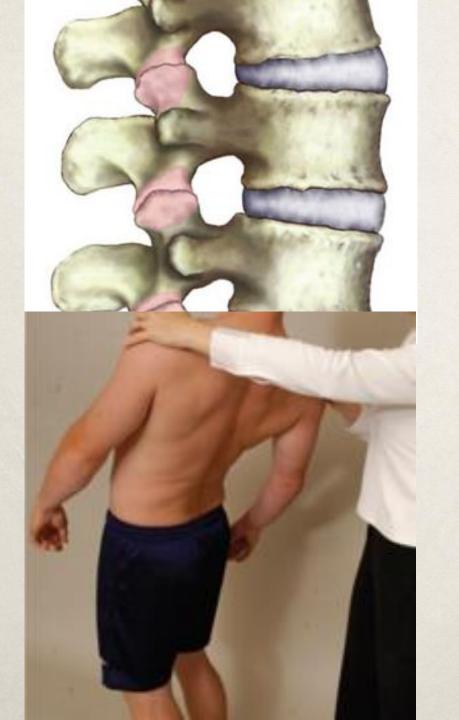
Risks

Benefits

- ***** Rare:
 - * Epidural Hematoma
 - * Epidural Abscess
 - * Nerve damage
- * Uncommon
 - * Headache
 - * Steroid Risks with excessive/frequent dosing
- * Common
 - * Insomnia
 - * Elevated blood sugar

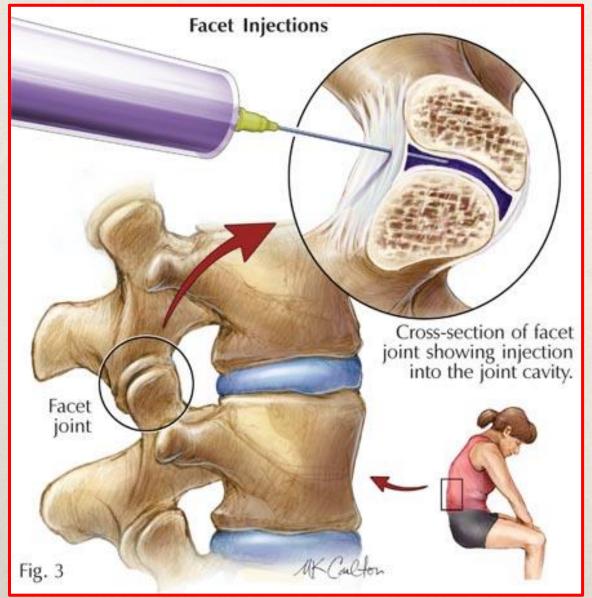
- * Short-term pain relief
- Better relief when combined with PT/HEP
- * Avoid surgery

Spinal Facet Joint Arthritis

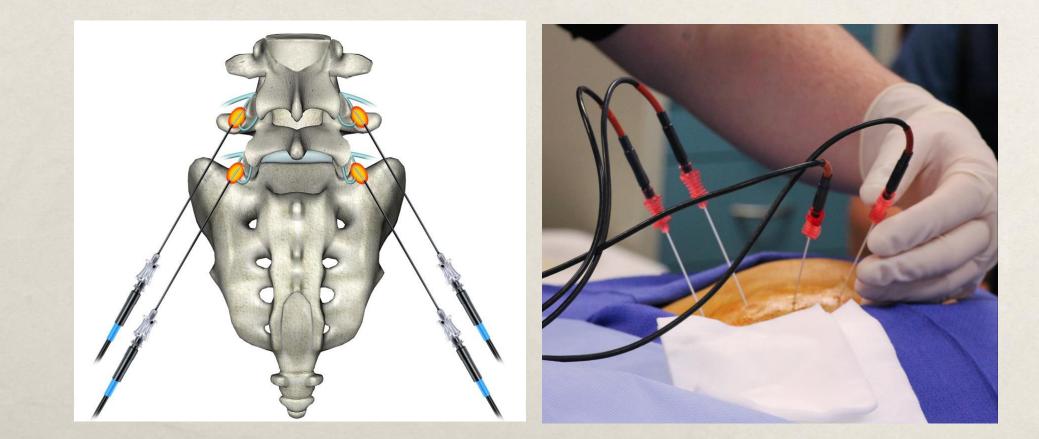

Facets as Source of Chronic Spine Pain

•15-45% low back

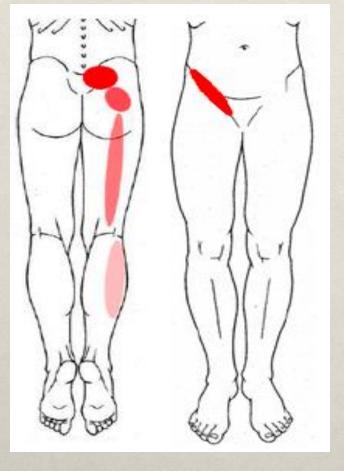
•48% thoracic


•54-67% neck

Diagnostic Nerve Blocks/ Radiofrequency Ablation



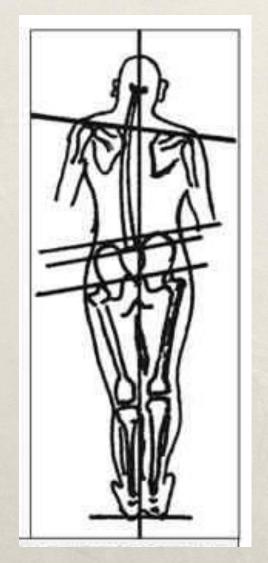
Facet Joint Intervention


- * Interventional Options
 - * Steroid Injection
 - * Uncommon, short-term relief
 - Medial branch nerve block
 Diagnostic prior to RFA
 - * Radiofrequency nerve ablation (RFA)
 * Duration 6-12 months



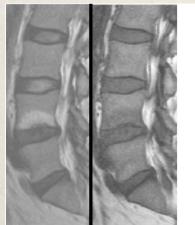
Facet Joint Radiofrequency Ablation

Sacroiliac Joint: Presentation



- Unilateral/bilateral, low back/buttock/hip pain, worst spot near the posterior superior iliac spine (PSIS)
- * May radiate to low lumbar, hip, groin, posterior thigh
- * Worse with prolonged sitting, standing or walking
- * "Mostly below the belt line"

Causes & Treatments

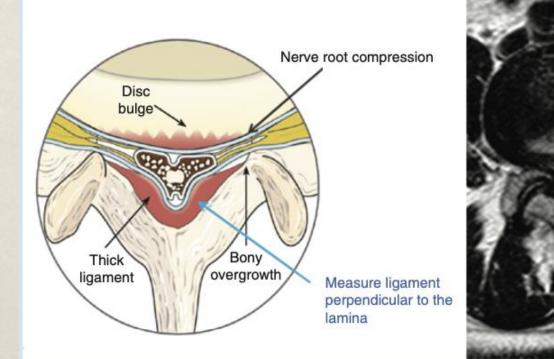

- * Leg length discrepancy
- * Scoliosis
- History of spine surgery/fusion
- Altered gait (s/p hip/knee injury/surgery)
- * Pregnancy
- Inflammation: ankylosing spondylitis
- Degenerative disease: osteoarthritis of the joint

- * Intraarticular steroid injections
- Nerve ablation
- * Joint fusion

Basivertebral Nerve Ablation

- Percutaneous intravertebral body radiofrequency ablation
 - Treatment resistant axial lower back pain with evidence of vertebral body end plate degeneration (Modic changes)
 - The basivertebral nerve is inside the vertebral body
 - Treatment for "vertebrogenic pain"

Modic I

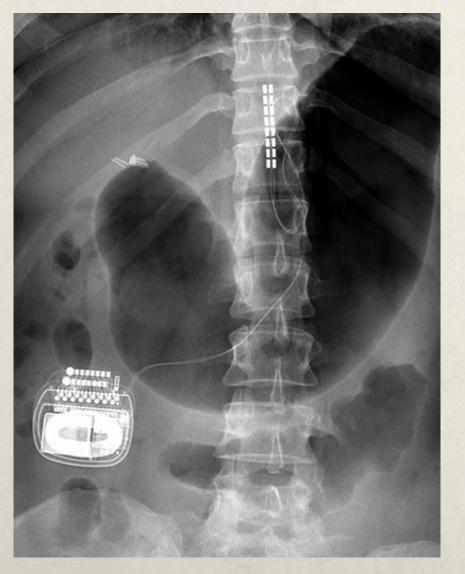

Modic II

Modic III

Jain S, Deer T, Sayed D, Chopra P, Wahezi S, Jassal N, Weisbein J, Jameson J, Malinowski M, Golovac S. Minimally invasive lumbar decompression: a review of indications, techniques, efficacy and safety. Pain Manag. 2020 Sep;10(5):331-348.

Minimally Invasive Lumbar Decompression (M ILD)

- For neurogenic claudication and mild-mod spinal stenosis from ligamentous hypertrophy
 - * Pros:
 - * Moderate no sedation
 - * Outpatient procedure
 - * Cons:
 - * Perhaps less efficacious than laminectomy
 - * Not for severe stenosis or >2 levels
 - * Evidence:
 - * 1 RCT demonstrated improvement in pain and mobility in MILD pts vs. ESI; clinical improvement out to 2 years



Jain S, Deer T, Sayed D, Chopra P, Wahezi S, Jassal N, Weisbein J, Jameson J, Malinowski M, Golovac S. Minimally invasive lumbar decompression: a review of indications, techniques, efficacy and safety. Pain Manag. 2020 Sep;10(5):331-348.

Spinal Cord Stimulation

What is it?

- Neuromodulation of spinal cord
- Modulates dorsal column transmission of pain signaling
- Mostly MRI conditional (varies by model/company)

Who?

- Failed spine surgery: back and/or leg pain?
- * Appropriate Patient
 - * Reasonable Expectations
 - Not on high dose opioids
 - * No major psychopathology
 - * Clear pain etiology

Thank You

Tim Furnish, MD UC San Diego Center for Pain Management