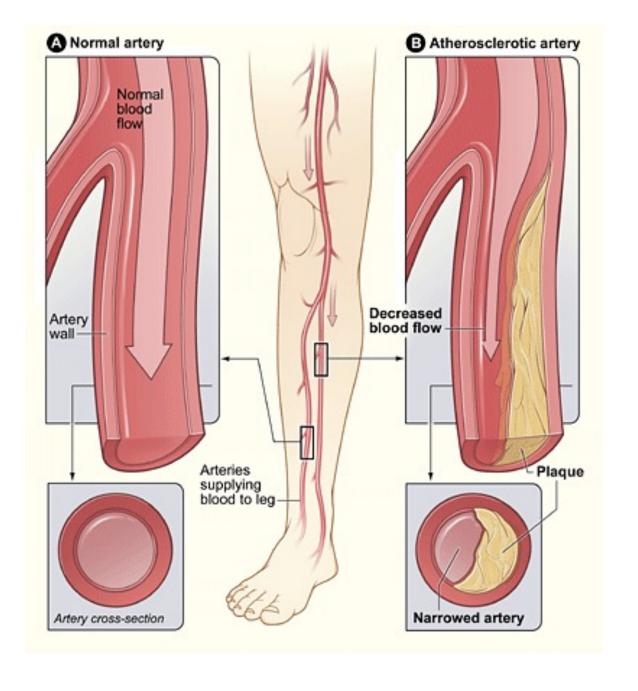
Updates in Peripheral Arterial Disease Management

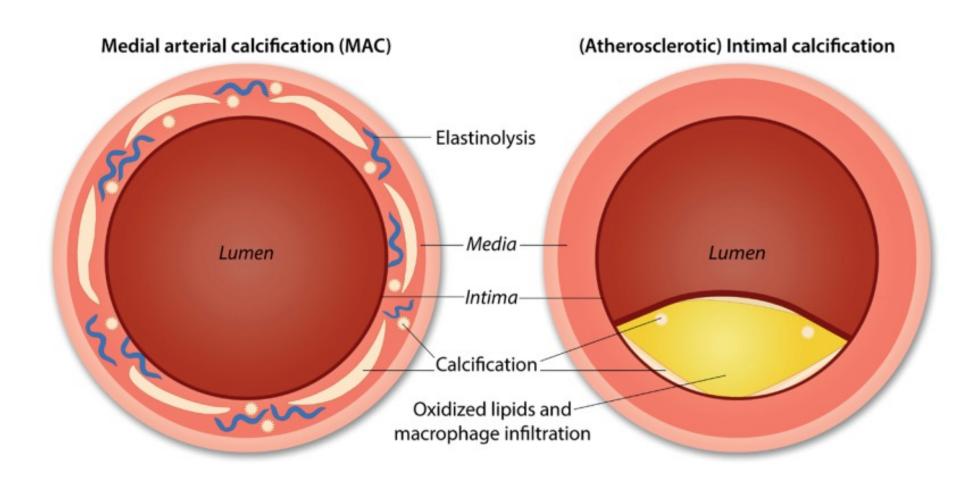
April 03, 2024

Tom Alsaigh, MD
Assistant Professor of Clinical Medicine and Surgery
Division of General Internal Medicine
Division of Vascular and Endovascular Surgery
talsaigh@ucsd.edu

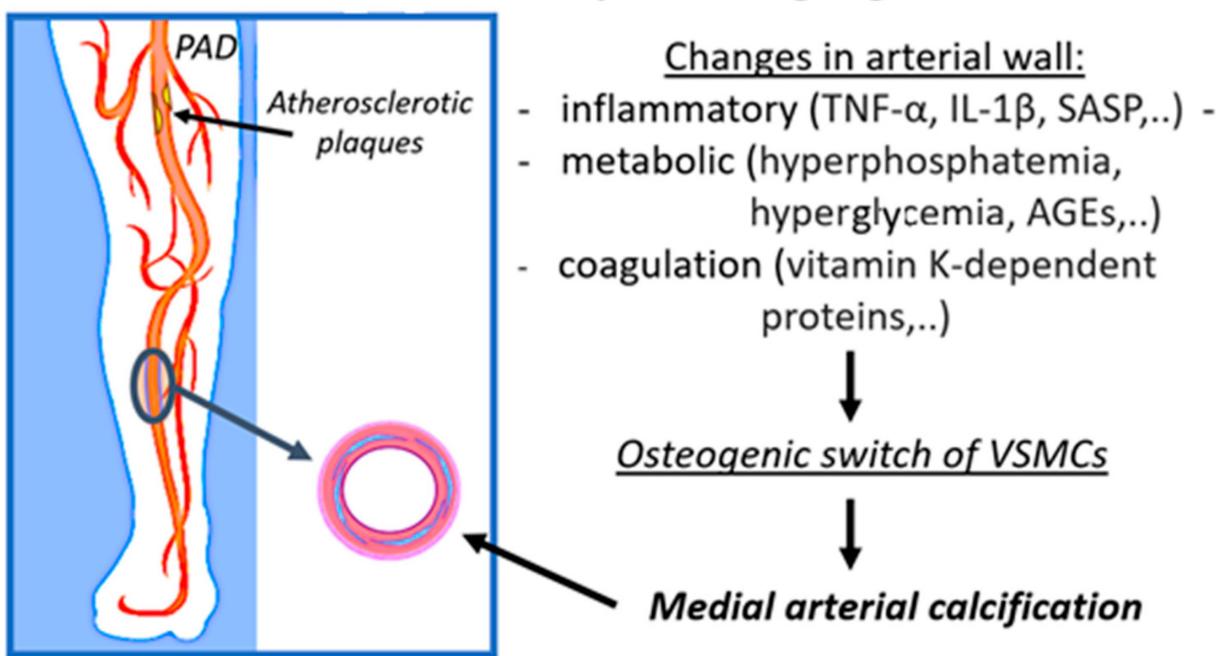
Disclosures


None

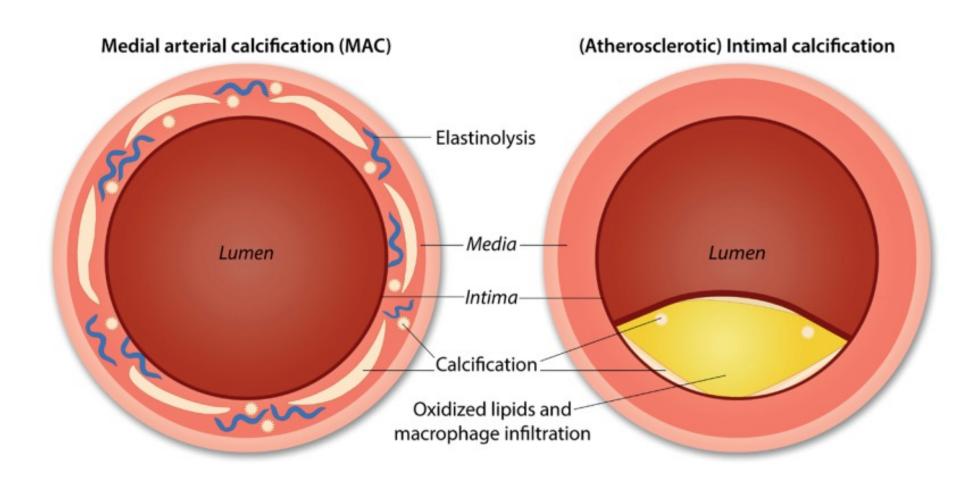
<u>Objectives</u>


- Identify PAD pathophysiology
- Review PAD epidemiology and risk factors
- Describe clinical manifestations of PAD
- Evaluate the latest evidence-based medical treatments

<u>Objectives</u>

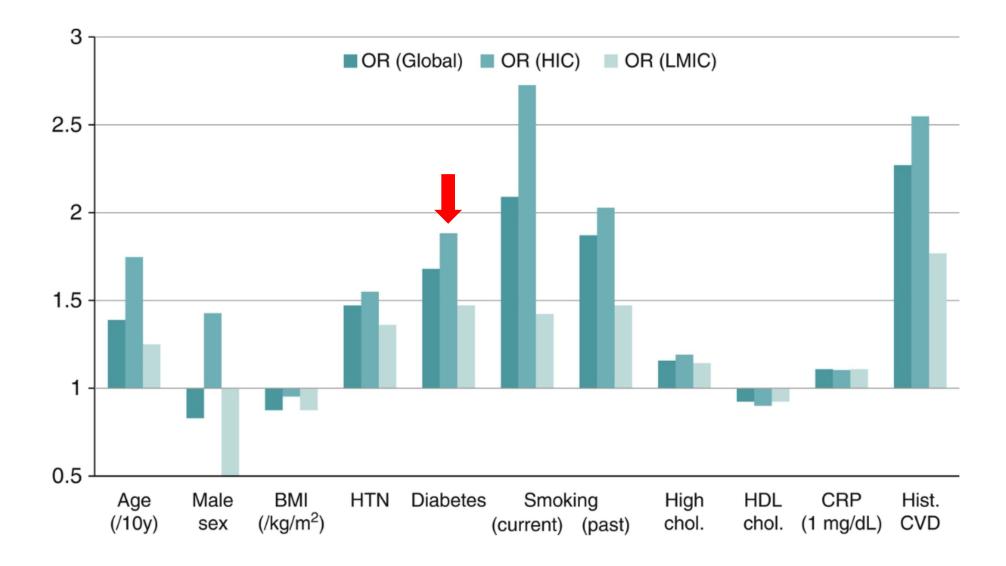

- Identify PAD pathophysiology
- Review PAD epidemiology and risk factors
- Describe clinical manifestations of PAD
- Evaluate the latest evidence-based medical treatments

Atherosclerosis vs Non-atherosclerosis mediated:


Diabetes, chronic kidney failure, ageing ...

Alsaigh, T., *NEJM*, 2023.

Atherosclerosis vs Non-atherosclerosis mediated:

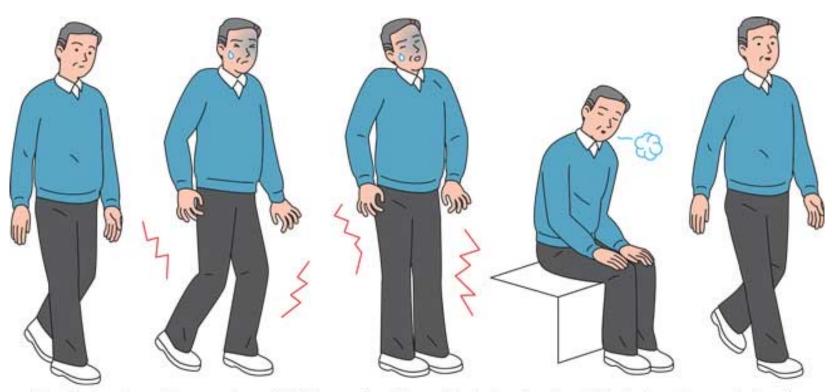


<u>Objectives</u>

- Identify PAD pathophysiology
- Review PAD epidemiology and risk factors
- Describe clinical manifestations of PAD
- Evaluate the latest evidence-based medical treatments

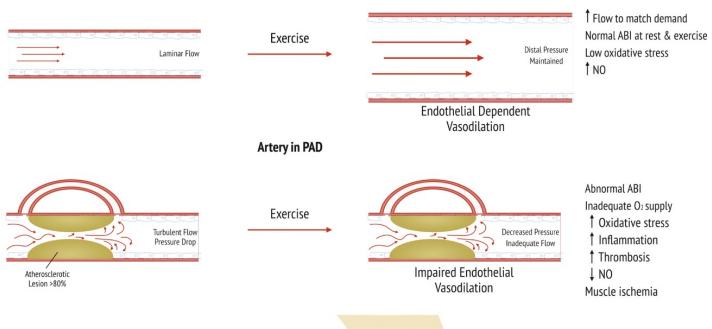
Epidemiology

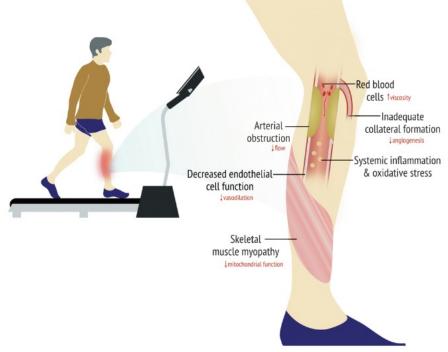
- PAD affects ~200M people worldwide (NEJM, 2016);
- PAD is poorly recognized based on PARTNERS trial^{1,2}:
 - Only 49% of the primary care physicians treating patients with a prior diagnosis of PAD were actually aware of it, despite documentation in medical records.
 - PAD is very common (prevalence: 29%) in high-risk individuals (>70 years without additional risk factors, or 50–69 years with a history of cigarette smoking or diabetes).
 - PAD patients are generally less intensively managed compared with CAD patients³.
- ~10% of pts >55yo seeking care in the VA Healthcare System have PAD4.


Adjusted expenditures	History of PAD (weighted n = 640,098)	All U.S. adults (weighted n = 148,387,362)	<i>P</i> value	
	Expenditure, USD (95% CI)	Expenditure, USD (95% CI)		
Inpatient	3834 (2209-5459)	1091 (1003-1179)	.001	
Outpatient	1185 (591-1779)	498 (443-553)	.02	
Office-based	2746 (1291-4201)	1068 (1029-1107)	.02	
ED	343 (180-507)	205 (185-226)	.09	
Medications	2662 (1905-3419)	1108 (1041-1176)	<.001	
Other	1275 (301-2248)	444 (418-471)	.09	
Total	11,553 (8137-14,968)	4219 (4064-4375)	<.001	

<u>Objectives</u>

- Identify PAD pathophysiology
- Review PAD epidemiology and risk factors
- Describe clinical manifestations of PAD
- Evaluate the latest evidence-based medical treatments


Clinical manifestations:


Claudication

The first noticeable symptom of PAD may be intermittent claudication. This is leg discomfort, pain or cramping that develops with activity, is relieved with rest, and recurs upon resuming activity. The pain is most often noticed in the calf, but may also be felt in the buttocks or thighs.

Healthy Artery

Nonatherosclerotic Causes of Exertional Leg Pain

Nonatherosclerotic arterial disease

Atheroembolism

Vasculitis

Extravascular compression

Popliteal artery entrapment

Adventitial cysts

Fibromuscular dysplasia

Endofibrosis of the internal iliac artery

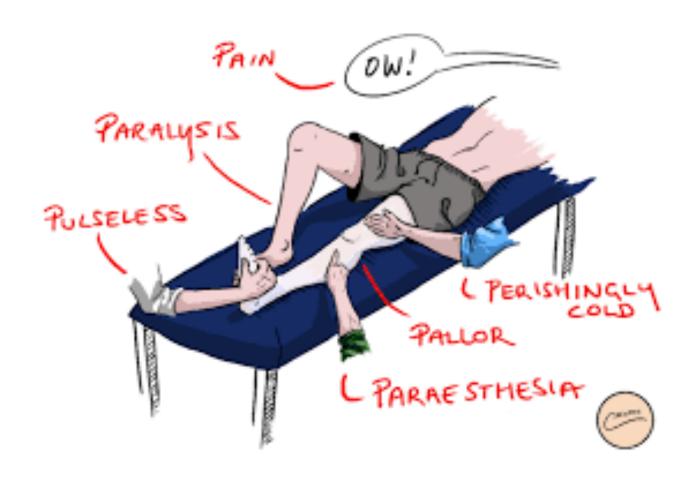
Venous claudication

Compartment syndrome

Lumbar radiculopathy

Spinal stenosis

Hip/knee arthritis


Myositis

<u>Differential diagnoses of intermittent</u> claudication:

Condition	Differentiation					
Non-vascular						
Spinal stenosis	Relieved by position change, may have leg weakness					
Osteoarthritis	Not quickly relieved by rest					
Lumbar nerve root irritation	Straight leg raise test is positive					
Vascular						
Venous claudication	History of deep vein thrombosis, pain relief on leg elevation, oedema, venous skin changes					
Buerger's disease (thromboangiitis obliterans)	Young male smokers					

Clinical manifestations:

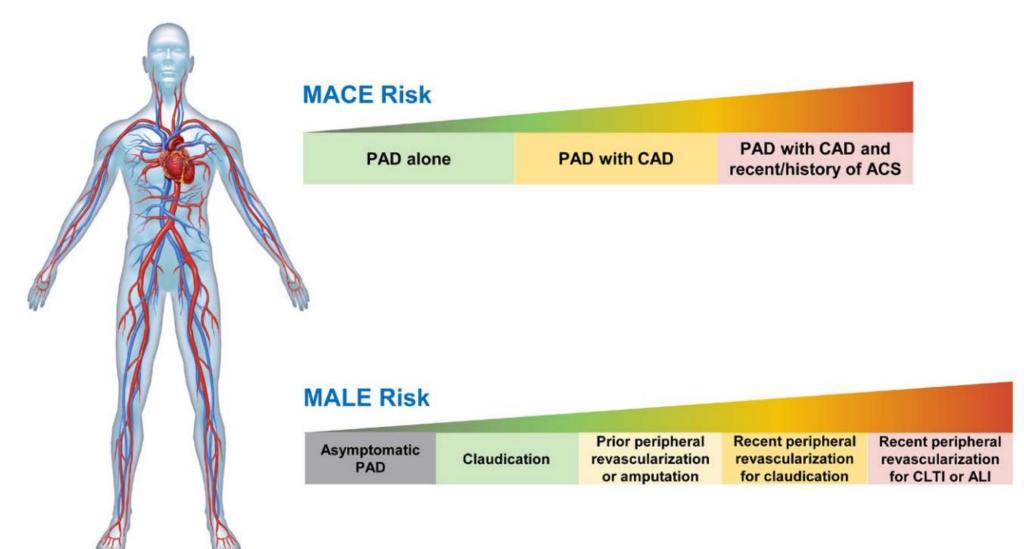
- Claudication
- Acute Limb Ischemia

Clinical manifestations:

- Claudication
- Acute Limb Ischemia
- Chronic limb threatening ischemia

Chronic Limb Threatening Ischemia (CTLI)

- Most debilitating manifestation of PAD.
- Incidence is between 300 and 1000 persons per million per year.
- In patients with critical limb ischemia the one-year risk of limb amputation is 30% and five-year all-cause mortality is 50%¹.


About 50% of patients with critical limb ischaemia (CLI), the advanced stage of PAD associated with lower-extremity amputation and significant mortality, also have diabetes and they fare worse than non-diabetics.

Non-invasive laboratory testing:

- Ankle-Brachial Index (US Lower Extremity ART Physiologic Complete)
- Toe-Brachial Index
- Segmental pressures with pulse volume recordings and waveform analysis (US Lower Extremity ART Physiologic Complete)
- Arterial duplex ultrasound (US Duplex Low EXTR ART Complete)
- CT Angiogram w/runoff

Objectives

- Identify PAD pathophysiology
- Review PAD epidemiology and risk factors
- Describe clinical manifestations of PAD
- Evaluate the latest evidence-based medical treatments

Exercise

Exercise:

- A meta-analysis of 32 randomized trials involving 1,835 patients with PAD showed that exercise therapy led to a significant improvement in maximum walking distance (mean 82 m; 95% CI 72–92 m).
- Exercise therapy is recommended for all patients without CLTI before revascularization is considered.
- Treadmill or other walking-based exercise programs, involving 30–50 min sessions three times per week for at least 12 weeks.

- Exercise
- Smoking cessation
 - Counseling, nicotine patches, Buproprion, Varenicline (Chantix)

- Exercise
- Smoking cessation
 - Counseling, nicotine patches, Buproprion, Varenicline (Chantix)
- Blood pressure Lowering

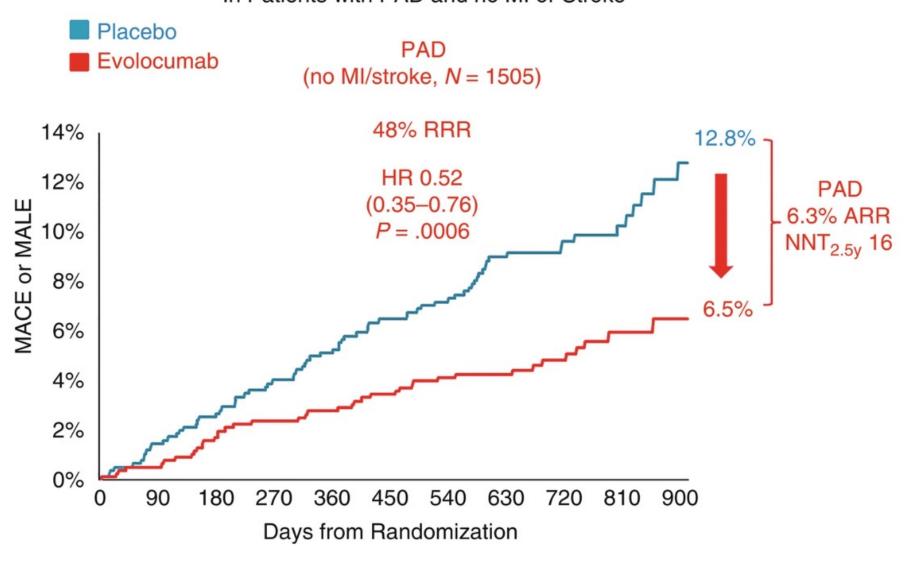
Table 3 Clinical events in the different ranges of ABI for patients randomized to ramipril and placebo respectively (percentage incidence). Relative risk with ramipril treatment and 95% confidence intervals are given below percentages

	No clinical PAD									
Clinical event ^a	ABI >0.9 (n=5231)		0.9–0.6 (<i>n</i> =1391)		<0.6 (n=727)		Clinical PAD (n=1725)		P-value for trend	
	Ramipril	Placebo	Ramipril	Placebo	Ramipril	Placebo	Ramipril	Placebo	Unadjusted	Adjusted ^b
Primary outcome (cardiovascular	12.6	14.9	15.7	21.6	16.4	22.0	20.1	25.8	0.45	0.53
mortality, MI, stroke)	0.83 (0.71,	0.96)	0.72 (0.56,	0.92)	0.77 (0.55,	1.09)	0.75 (0.61,	0.92)		
MI	9.3	11.0	12.3	15.2	11.2	15.5	12.3	16.1	0.48	0.56
	0.83 (0.70,	0.99)	0.81 (0.60,	1.09)	0.73 (0.48,	1.11)	0.75 (0.58,	0.98)		
Stroke	2.9	4.1	2.6	6.0	5.4 ` ´	6.4	6.2	8.3	0.76	0.75
	0.72 (0.53,	0.98)	0.44 (0.26,	0.77)	0.99 (0.52,	1.89)	0.72 (0.50,	1.05)		
Cardiovascular mortality	4.9	5.7	6.3	10.8	8.2 ` ´	10.4	10.4 ` ´	13.6	0.69	0.79
•	0.83 (0.65,	1.05)	0.62 (0.42,	0.90)	0.76 (0.46,	1.25)	0.75 (0.56,	0.99)		
All cause death	8.9	8.8	9.6	15.9	13.2 ` ´	16.2	16.7 ` ´	19 [.] 4	0.37	0.39
	0.99 (0.83,	1.20)	0.58 (0.42,	0.79)	0.81 (0.55,	1.19)	0.85 (0.68,	1.07)		
Revascularization	15.6	18.0	15.5	18.8	14.2	13.6	25.2	27.7	0.81	0.78
	0.87 (0.76,	0.99)	0.82 (0.64,	1.07)	0.91 (0.61,	1.37)	0.89 (0.74,	1.09)		
Diabetic complications	14.4	16.5	15.4	17.0	17.4	20.4	22.1	26.7	0.85	0.82
	0.89 (0.70,	1.13)	0.80 (0.53,	1.21)	0.83 (0.50,	1.39)	0.87 (0.62,	1.21)		
Hospitalizations for CHF	2.7	2.4	2.7	4.1	4.2	6.1	5.0	6.6	0.21	0.22
	1.13 (0.80,		0.69 (0.38,		0.66 (0.34,		0.81 (0.53,			

P-values are for trend of effect on ramipril on each of the outcomes with PAD category. Primary outcome=cargiovascular mortality, MI, stroke., MI=Myocardial infarction, CHF=Congestive heart failure.

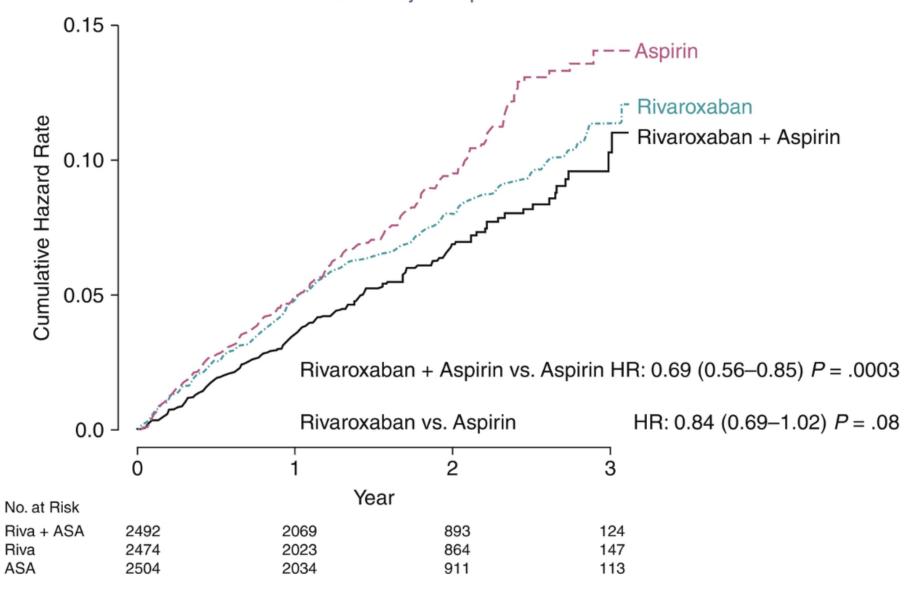
^bAfter adjustment for all baseline variables (in Table 1) which are significantly different.

Table 2. Primary and Secondary Outcomes and Renal Outcomes.*										
Outcome	Intensive Tre	eatment	Standard Tre	atment	Hazard Ratio (95% CI)	P Value				
	no. of patients (%)	% per year	no. of patients (%)	% per year						
All participants	(N = 4678)		(N = 4683)							
Primary outcome†	243 (5.2)	1.65	319 (6.8)	2.19	0.75 (0.64–0.89)	<0.001				
Secondary outcomes										
Myocardial infarction	97 (2.1)	0.65	116 (2.5)	0.78	0.83 (0.64–1.09)	0.19				
Acute coronary syndrome	40 (0.9)	0.27	40 (0.9)	0.27	1.00 (0.64–1.55)	0.99				
Stroke	62 (1.3)	0.41	70 (1.5)	0.47	0.89 (0.63-1.25)	0.50				
Heart failure	62 (1.3)	0.41	100 (2.1)	0.67	0.62 (0.45_0.84)	0.002				
Death from cardiovascular causes	37 (0.8)	0.25	65 (1.4)	0.43	0.57 (0.38-0.85)	0.005				
Death from any cause	155 (3.3)	1.03	210 (4.5)	1.40	0.73 (0.60-0.90)	0.003				
Primary outcome or death	332 (7.1)	2.25	423 (9.0)	2.90	0.78 (0.67–0.90)	<0.001				
Participants with CKD at baseline	(N=1330)		(N=1316)							
Composite renal outcome‡	14 (1.1)	0.33	15 (1.1)	0.36	0.89 (0.42–1.87)	0.76				
≥50% reduction in estimated GFR§	10 (0.8)	0.23	11 (0.8)	0.26	0.87 (0.36–2.07)	0.75				
Long-term dialysis	6 (0.5)	0.14	10 (0.8)	0.24	0.57 (0.19–1.54)	0.27				
Kidney transplantation	0		0							
Incident albuminuria¶	49/526 (9.3)	3.02	59/500 (11.8)	3.90	0.72 (0.48–1.07)	0.11				
Participants without CKD at baseline	(N = 3332)		(N = 3345)							
$\geq\!\!30\%$ reduction in estimated GFR to <60 ml/ min/1.73 $m^2 \ \!\!\! \lceil$	127 (3.8)	1.21	37 (1.1)	0.35	3.49 (2.44–5.10)	<0.001				
Incident albuminuria¶	110/1769 (6.2)	2.00	135/1831 (7.4)	2.41	0.81 (0.63–1.04)	0.10				


Eur Heart J, 2004.

NEJM, 2015.

^a In those with an ABI ≤0.9 and no clinical PAD the results in the primary outcome is RR 0.73 (95% CI=0.60–0.90).


- Exercise
- Smoking cessation
 - Counseling, nicotine patches, Buproprion, Varenicline (Chantix)
- Blood pressure Lowering
- Lipid-lowering therapy
 - UK Heart Protection Study → 40mg simvastatin reduced incidence of MACE in PAD pts (RR 0.78, 95% CI 0.71–0.85).

MACE or MALE
In Patients with PAD and no MI or Stroke

- Exercise
- Smoking cessation
 - Counseling, nicotine patches, Buproprion, Varenicline (Chantix)
- Blood pressure Lowering
- Lipid-lowering therapy
 - UK Heart Protection Study → 40mg simvastatin reduced incidence of MACE in PAD pts (RR 0.78, 95% CI 0.71–0.85).
- Antiplatelet/antithrombotic therapy

MACE or MALE or Major Amputation

Genome-wide association study of peripheral artery disease in the Million Veteran Program

Derek Klarin 1,2,3,4, Julie Lynch 5,6,7, Krishna Aragam^{2,3}, Mark Chaffin 3, Themistocles L. Assimes 8,9, Jie Huang 10, Kyung Min Lee 5,7,11, Qing Shao 7, Jennifer E. Huffman 10, Pradeep Natarajan 1,2,12, Shipra Arya 8,13, Aeron Small 14,15, Yan V. Sun 16,17,18, Marijana Vujkovic 14,19, Matthew S. Freiberg 20,21, Lu Wang 19, Jinbo Chen 19, Danish Saleheen 14,19, Jennifer S. Lee 9,10, Donald R. Miller 22,23, Peter Reaven 4, Patrick R. Alba 5,25, Olga V. Patterson 5,25, Scott L. DuVall 5,25, William E. Boden 1,10, Joshua A. Beckman 6, J. Michael Gaziano 1,27, John Concato 15,28,34, Daniel J. Rader 9, Kelly Cho 1, Kyong-Mi Chang 14,29, Peter W. F. Wilson 6,30, Christopher J. O'Donnell 1,31, Sekar Kathiresan 2,3, VA Million Veteran Program 2, Philip S. Tsao 8,9,35 and Scott M. Damrauer 14,33,35*

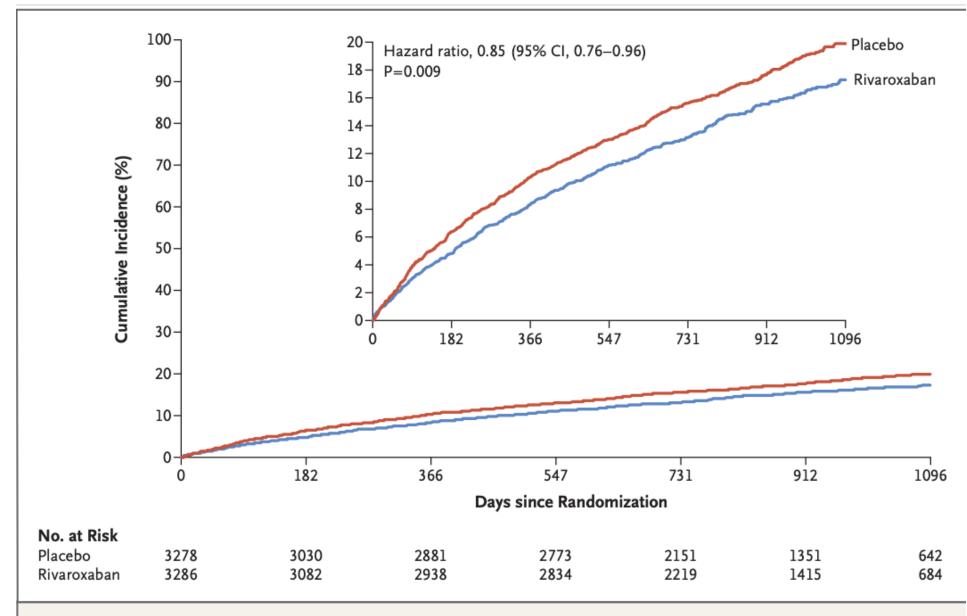
Table 1 PAD risk loci discovered in the MVP biobank and replicated in the UK Biobank									
Chr:Pos	rsid	EA	NEA	EAF	Overall OR ^a	Overall 95% CI ^a	Overall P ^a	Annotation	Gene/Locus ^b
1:109817192	rs7528419	Α	G	0.772	1.07	1.05-1.09	2.54×10 ⁻¹¹	3' UTR variant	CELSR2/SORT1
1:169519049	rs6025	T	С	0.026	1.2	1.14-1.26	1.63×10^{-12}	Missense variant (Factor V Leiden)	F5 -
6:160985526	rs118039278	Α	G	0.068	1.26	1.22-1.30	1.57×10^{-43}	Intron variant	LPA ←
6:31065071	rs3130968	Т	С	0.144	1.07	1.05-1.10	3.16×10^{-10}	Regulatory region variant	(HLA-B)
7:19049388	rs2107595	Α	G	0.187	1.08	1.05-1.10	2.49×10^{-11}	Regulatory region variant	(HDAC9)
7:22786532	rs4722172	G	Α	0.202	1.08	1.05-1.10	3.65×10^{-11}	Intergenic variant	(IL6)
8:19819217	rs322	Α	С	0.706	1.06	1.04-1.07	2.53×10^{-9}	Intron variant	LPL
9:136149229	rs505922	С	Т	0.334	1.06	1.04-1.07	7.10×10^{-11}	Intron variant	ABO
9:22103183	rs1537372	Т	G	0.421	1.12	1.10-1.14	4.32×10^{-39}	Intron variant	CDKN2B-AS1/9p21
10:114758349	rs7903146	Т	С	0.293	1.06	1.04-1.08	3.76×10^{-11}	Intron variant	TCF7L2
11:102710471	rs566125	Т	С	0.127	1.08	1.05-1.11	4.37×10^{-9}	Intron variant	MMP3
11:46342834	rs7476	С	Α	0.364	1.06	1.04-1.08	8.33×10^{-10}	3′ UTR variant	CREB3L1
12:112871372	rs11066301	G	Α	0.413	1.06	1.04-1.08	2.96×10^{-11}	Intron variant	PTPN11
12:79951566	rs4842266	G	Α	0.388	1.06	1.04-1.08	1.01×10 ⁻⁹	Upstream gene variant	RP11-359M6.3
13:110828891	rs1975514	С	Т	0.357	1.05	1.04-1.07	8.32×10^{-10}	Intron variant	COL4A1
14:70501364	rs55784307	Α	С	0.183	1.06	1.04-1.09	2.93×10 ⁻⁸	Downstream gene variant	SMOC1
15:78915864	rs10851907	Α	G	0.41	1.06	1.05-1.08	1.49×10^{-13}	Upstream gene variant	CHRNA3
17:66089393	rs62084752	С	G	0.216	1.07	1.05-1.09	1.58×10^{-10}	Upstream gene variant	LOC732538
19:11191729	rs138294113	С	Т	0.879	1.09	1.06-1.11	1.20×10^{-10}	Intergenic variant	(LDLR)

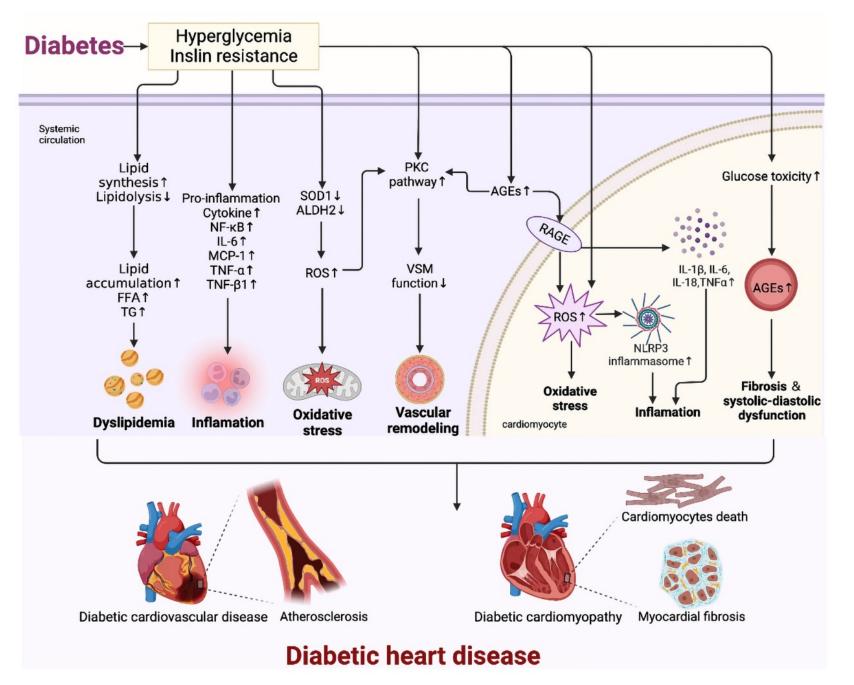
^aOverall OR, 95% CI and *P* (two-sided) represent logistic regression statistics following meta-analysis of MVP and UK Biobank (total *N* = 36,424 PAD cases and 601,044 controls). ^bGenes for variants that are outside the transcript boundary of a protein-coding gene are shown with nearest candidate gene in parentheses (for example, (*LDLR*)). Chr, chromosome; Pos, position; rsid, RefSNP identification number; EA, effect allele; NEA, non effect allele; EAF, effect allele frequency.

ORIGINAL ARTICLE

Rivaroxaban in Peripheral Artery Disease after Revascularization

Marc P. Bonaca, M.D., M.P.H., Rupert M. Bauersachs, M.D.,
Sonia S. Anand, M.D., E. Sebastian Debus, M.D., Ph.D., Mark R. Nehler, M.D.,
Manesh R. Patel, M.D., Fabrizio Fanelli, M.D., Warren H. Capell, M.D.,
Lihong Diao, M.D., Nicole Jaeger, M.S., Connie N. Hess, M.D., M.H.S.,
Akos F. Pap, M.Sc., John M. Kittelson, Ph.D., Ivan Gudz, M.D., Ph.D.,
Lajos Mátyás, M.D., Dainis K. Krievins, M.D., Rafael Diaz, M.D.,
Marianne Brodmann, M.D., Eva Muehlhofer, M.D., Lloyd P. Haskell, M.D.,
Scott D. Berkowitz, M.D., and William R. Hiatt, M.D.




Figure 2. Kaplan-Meier Analysis of the Primary Composite Efficacy Outcome.

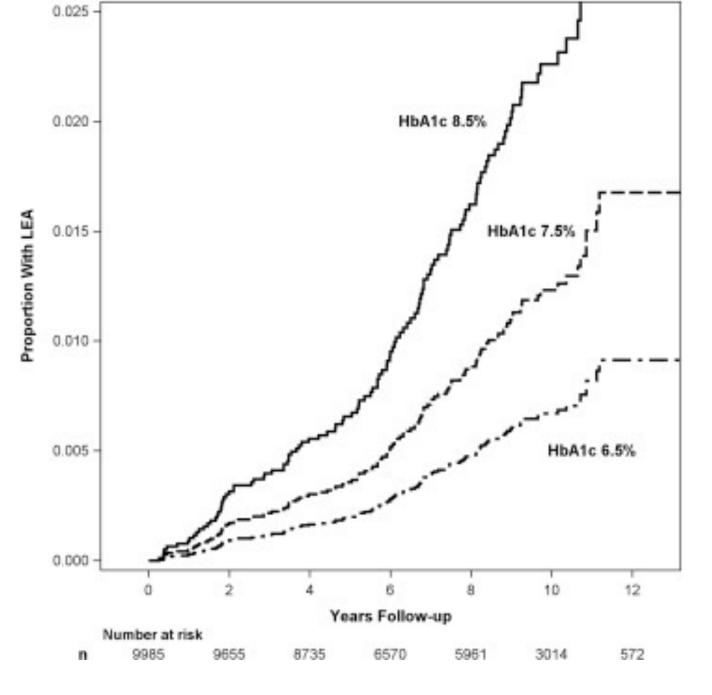
Management:

- Exercise
- Smoking cessation
 - Counseling, nicotine patches, Buproprion, Varenicline (Chantix)
- Blood pressure Lowering
- Lipid-lowering therapy
 - UK Heart Protection Study → 40mg simvastatin reduced incidence of MACE in PAD pts (RR 0.78, 95% CI 0.71–0.85).
- Antiplatelet/antithrombotic therapy
 - Aspirin + low dose rivaroxaban in PAD pts with stable CV disease or hx of revascularization.

Management:

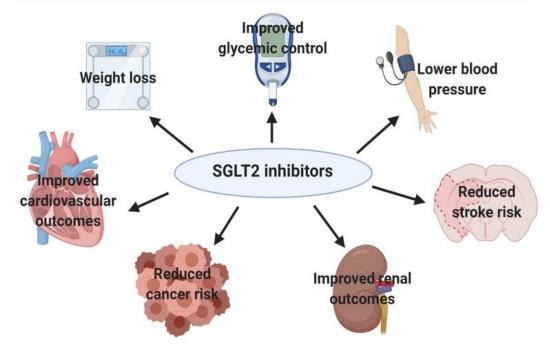
- Exercise
- Smoking cessation
 - Counseling, nicotine patches, Buproprion, Varenicline (Chantix)
- Blood pressure Lowering
- Lipid-lowering therapy
 - UK Heart Protection Study → 40mg simvastatin reduced incidence of MACE in PAD pts (RR 0.78, 95% CI 0.71–0.85).
- Antiplatelet/antithrombotic therapy
 - Aspirin + low dose rivaroxaban in PAD pts with stable CV disease or hx of revascularization.
- Glucose-lowering therapies in Diabetics

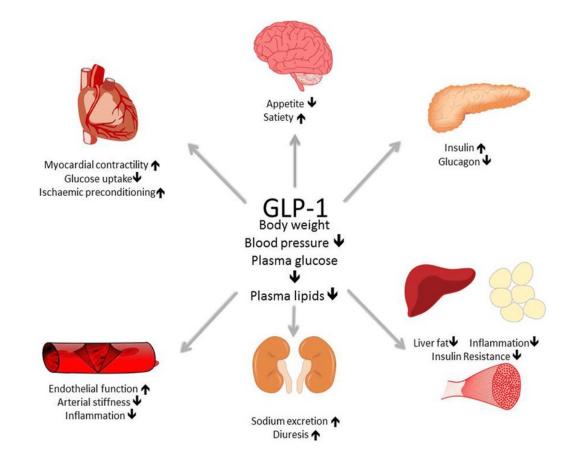
The NEW ENGLAND JOURNAL of MEDICINE

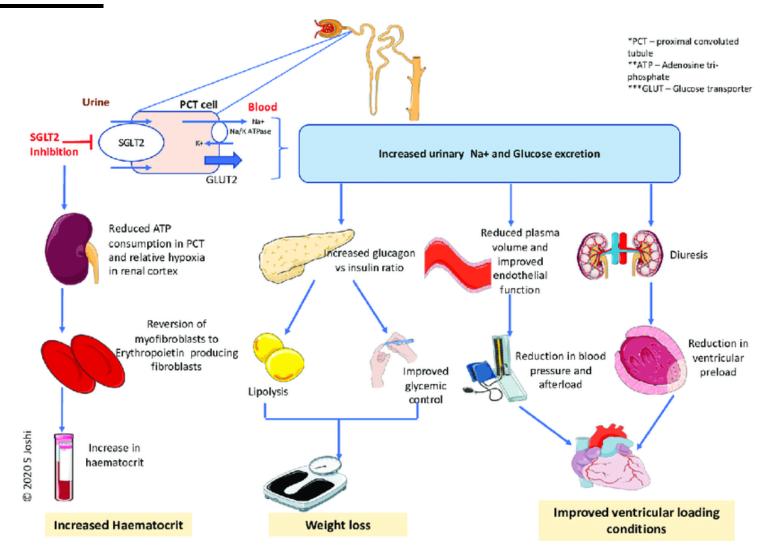

ESTABLISHED IN 1812

JUNE 12, 2008

VOL. 358 NO. 24


Effects of Intensive Glucose Lowering in Type 2 Diabetes


The Action to Control Cardiovascular Risk in Diabetes Study Group*


SGLT2i and GLP1-RA:

Beneficial Effects of SGLT2 Inhibitors in Clinical and Preclinical Studies

SGLT2i:

inis igare was dealed using server medical art. Intp://smart.servier.co

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

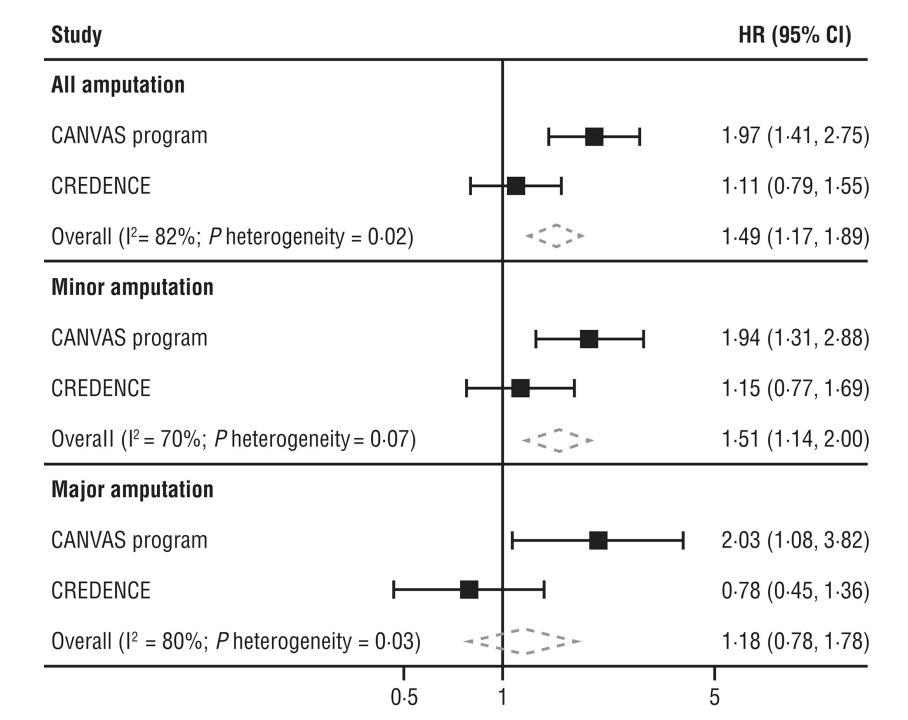
Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes

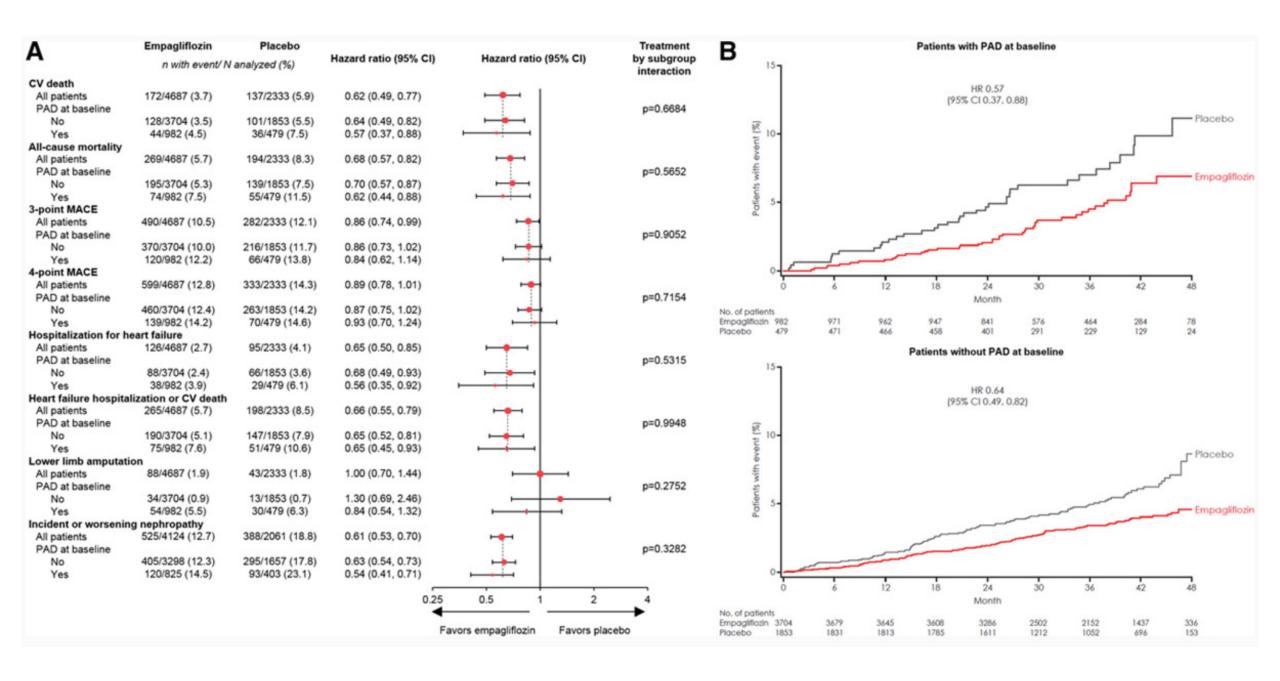
Bruce Neal, M.B., Ch.B., Ph.D., Vlado Perkovic, M.B., B.S., Ph.D.,
Kenneth W. Mahaffey, M.D., Dick de Zeeuw, M.D., Ph.D., Greg Fulcher, M.D.,
Ngozi Erondu, M.D., Ph.D., Wayne Shaw, D.S.L., Gordon Law, Ph.D.,
Mehul Desai, M.D., and David R. Matthews, D.Phil., B.M., B.Ch.,
for the CANVAS Program Collaborative Group*

Table 2. Adverse Events.*						
Event	Canagliflozin	Placebo	P Value†			
	event rate per 100					
All serious adverse events	104.3	120.0	0.04			
Adverse events leading to discontinuation	35.5	32.8	0.07			
Serious and nonserious adverse events of interest recorded in the CANVAS Program						
Acute pancreatitis (adjudicated)	0.5	0.4	0.63			
Cancer						
Renal cell	0.6	0.2	0.17			
Bladder	1.0	1.1	0.74			
Breast	3.1	2.6	0.65			
Photosensitivity	1.0	0.3	0.07			
Diabetic ketoacidosis (adjudicated)	0.6	0.3	0.14			
Amputation	6.3	3.4	<0.001			
Fracture (adjudicated):						
All	15.4	11.9	0.02			
Low-trauma	11.6	9.2	0.06			
Venous thromboembolic events	1.7	1.7	0.63			
Infection of male genitalia§	34.9	10.8	< 0.001			
Serious and nonserious adverse events of interest collected in CANVAS alone¶						
Osmotic diuresis	34.5	13.3	< 0.001			
Volume depletion	26.0	18.5	0.009			
Hypoglycemia	50.0	46.4	0.20			
Acute kidney injury	3.0	4.1	0.33			
Hyperkalemia	6.9	4.4	0.10			
Urinary tract infection	40.0	37.0	0.38			
Mycotic genital infection in women	68.8	17.5	<0.001			
Severe hypersensitivity or cutaneous reaction	8.5	6.1	0.17			
Hepatic injury	7.4	9.1	0.35			
Renal-related (including acute kidney injury)	19.7	17.4	0.32			

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


JUNE 13, 2019


VOL. 380 NO. 24

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

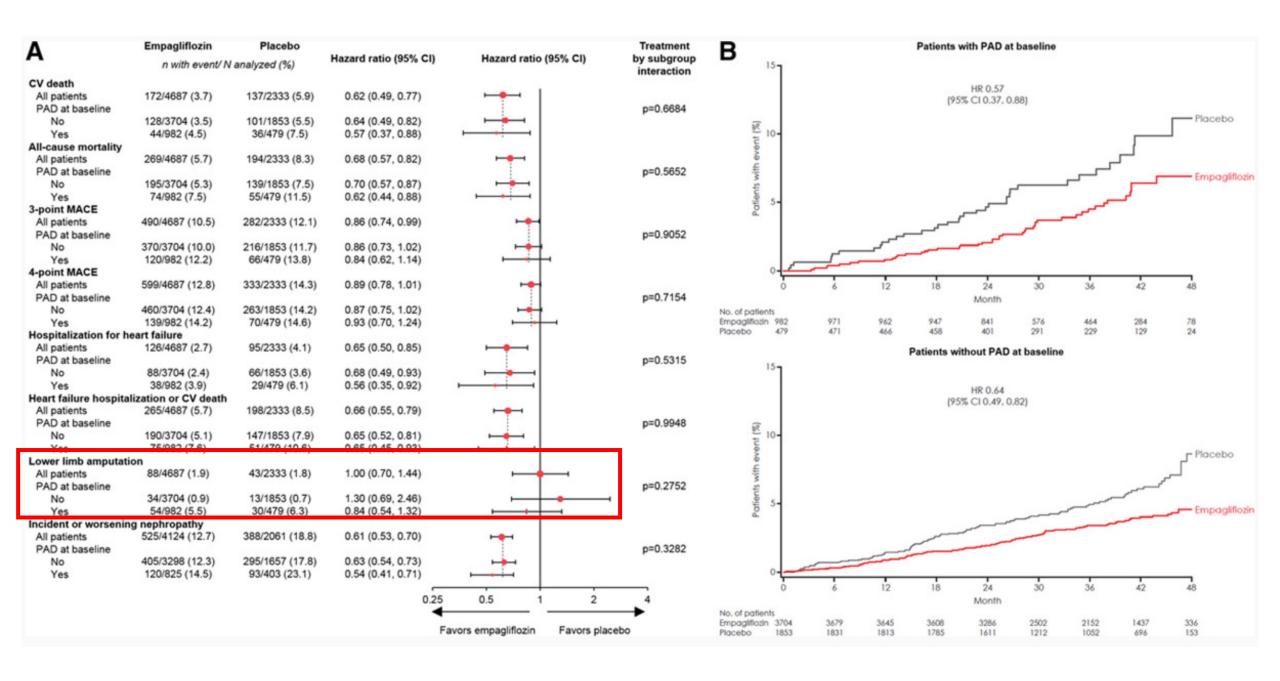
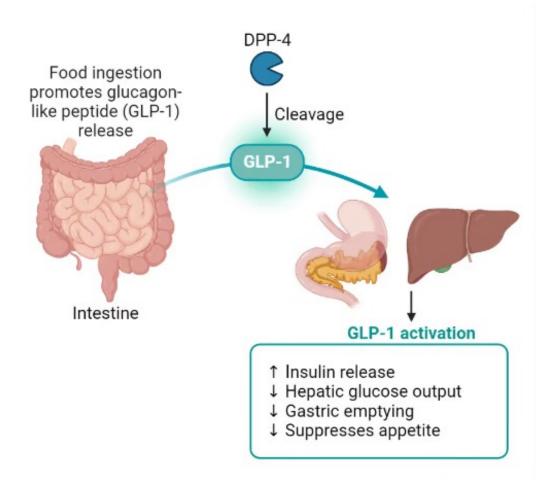

V. Perkovic, M.J. Jardine, B. Neal, S. Bompoint, H.J.L. Heerspink, D.M. Charytan, R. Edwards, R. Agarwal, G. Bakris, S. Bull, C.P. Cannon, G. Capuano, P.-L. Chu, D. de Zeeuw, T. Greene, A. Levin, C. Pollock, D.C. Wheeler, Y. Yavin, H. Zhang, B. Zinman, G. Meininger, B.M. Brenner, and K.W. Mahaffey, for the CREDENCE Trial Investigators*

Table 1. Demographic and Clinical Characteristics of the Patients at Baseline.*							
Characteristic	Canagliflozin (N = 2202)	Placebo (N = 2199)	All Patients (N=4401)				
Age — yr	62.9±9.2	63.2±9.2	63.0±9.2				
Female sex — no. (%)	762 (34.6)	732 (33.3)	1494 (33.9)				
Race or ethnic group — no. (%)†							
White	1487 (67.5)	1444 (65.7)	2931 (66.6)				
Black	112 (5.1)	112 (5.1)	224 (5.1)				
Asian	425 (19.3)	452 (20.6)	877 (19.9)				
Other	178 (8.1)	191 (8.7)	369 (8.4)				
Current smoker — no. (%)	341 (15.5)	298 (13.6)	639 (14.5)				
Hypertension — no. (%)	2131 (96.8)	2129 (96.8)	4260 (96.8)				
Heart failure — no. (%)	329 (14.9)	323 (14.7)	652 (14.8)				
Duration of diabetes — yr	15.5±8.7	16.0±8.6	15.8±8.6				
Cardiovascular disease — no. (%)	1113 (50.5)	1107 (50.3)	2220 (50.4)				
Amputation — no. (%)	119 (5.4)	115 (5.2)	234 (5.3)				
Body-mass index‡	31.4±6.2	31.3±6.2	31.3±6.2				
Blood pressure — mm Hg							
Systolic	139.8±15.6	140.2±15.6	140.0±15.6				
Diastolic	78.2±9.4	78.4±9.4	78.3±9.4				
Glycated hemoglobin — %	8.3±1.3	8.3±1.3	8.3±1.3				
Estimated GFR — ml/min/1.73 m ² §	56.3±18.2	56.0±18.3	56.2±18.2				
Median urinary albumin-to-creatinine ratio (IQR)¶	923 (459–1794)	931 (473–1868)	927 (463–1833)				

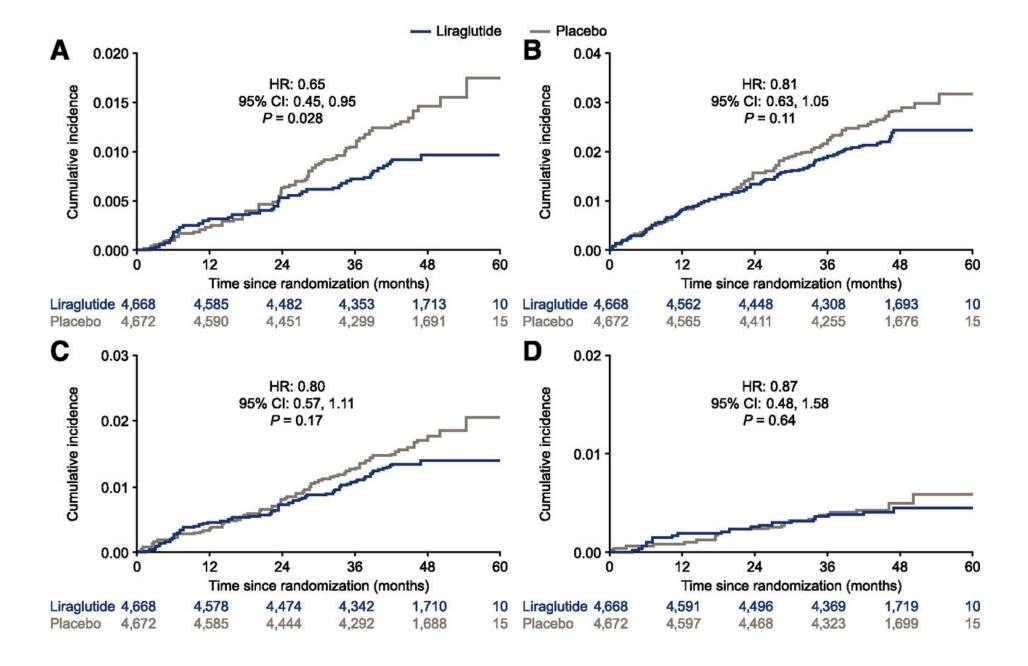

Verma, S. Circulation, 2017.

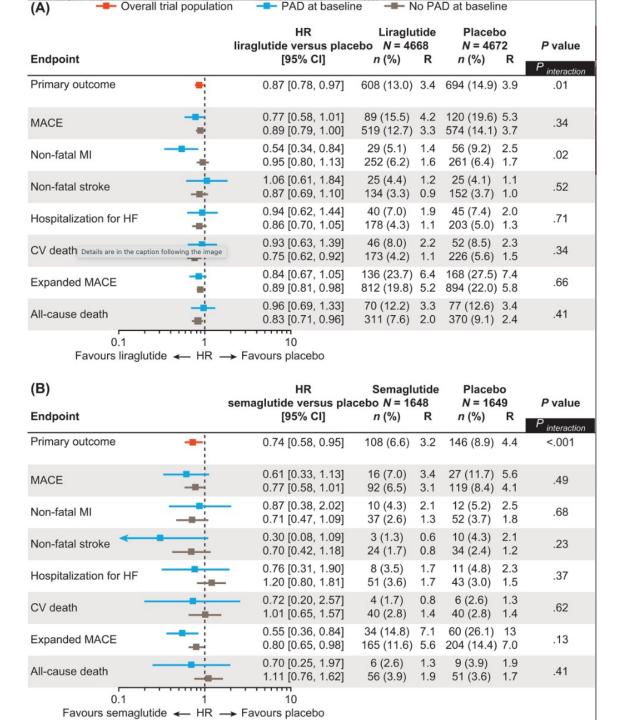
Verma, S. Circulation, 2017.

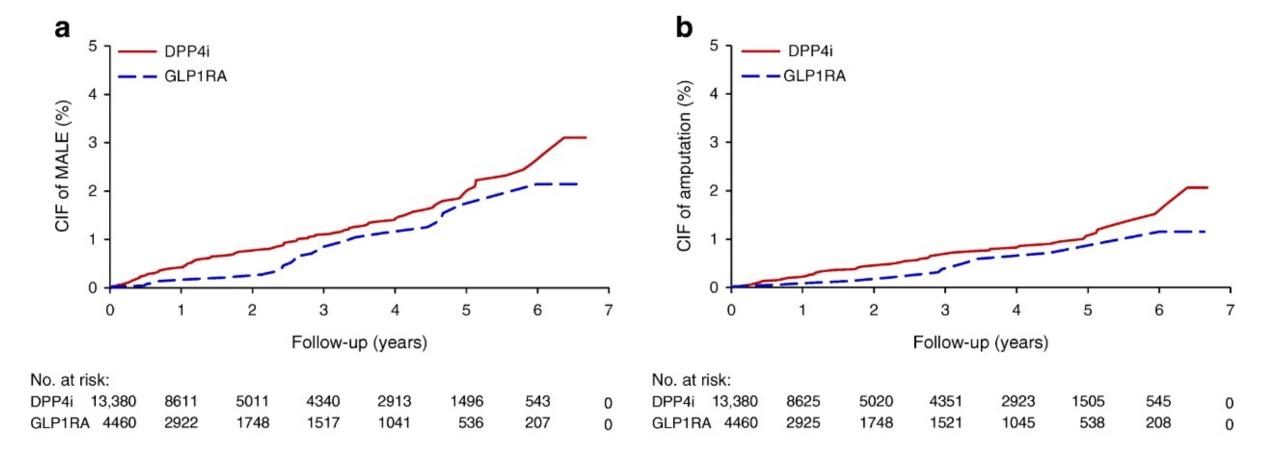
GLP1-RA:

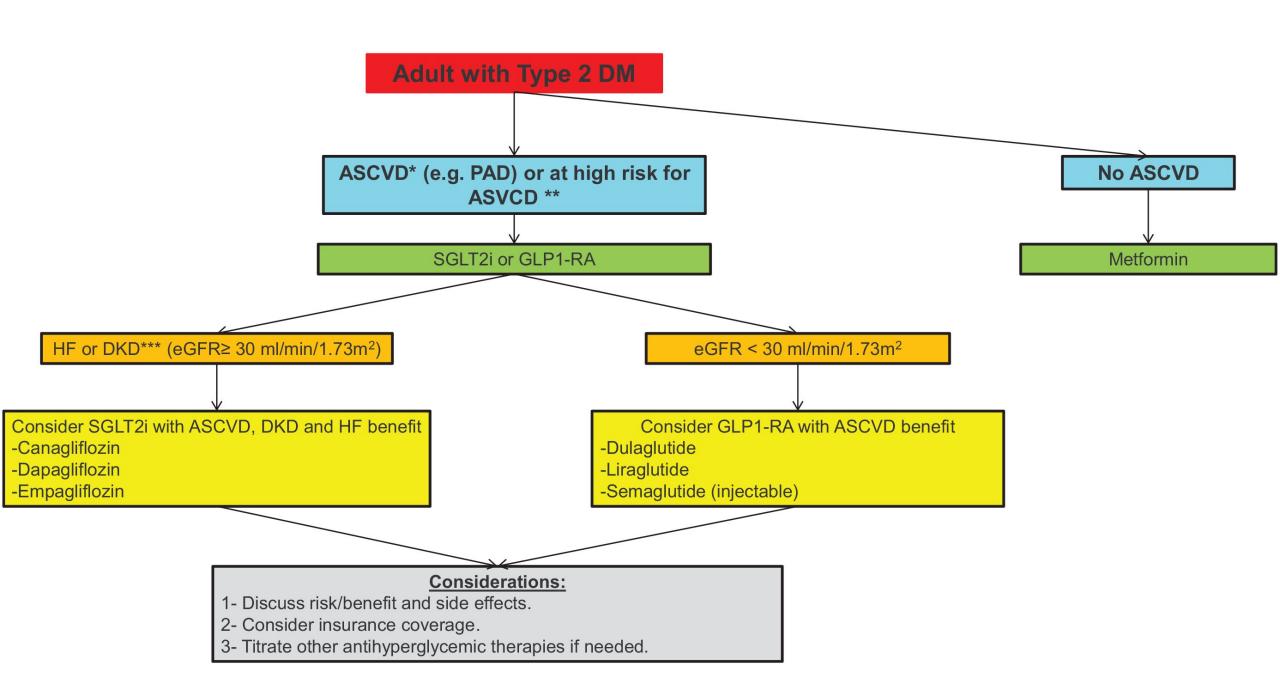
GLP-1 agonists

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812


JULY 28, 2016


VOL. 375 NO. 4


Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

Steven P. Marso, M.D., Gilbert H. Daniels, M.D., Kirstine Brown-Frandsen, M.D., Peter Kristensen, M.D., E.M.B.A., Johannes F.E. Mann, M.D., Michael A. Nauck, M.D., Steven E. Nissen, M.D., Stuart Pocock, Ph.D., Neil R. Poulter, F.Med.Sci., Lasse S. Ravn, M.D., Ph.D., William M. Steinberg, M.D., Mette Stockner, M.D., Bernard Zinman, M.D., Richard M. Bergenstal, M.D., and John B. Buse, M.D., Ph.D., for the LEADER Steering Committee on behalf of the LEADER Trial Investigators*

Summary

