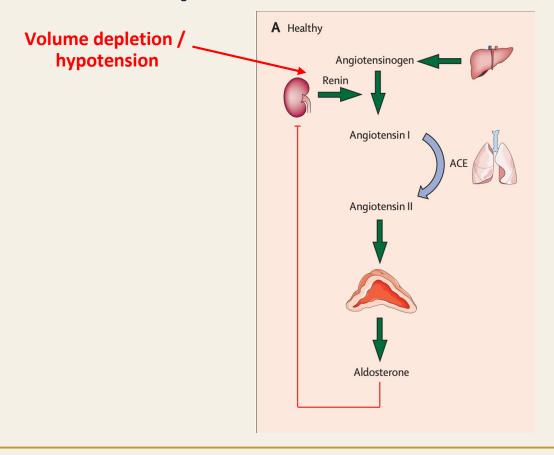
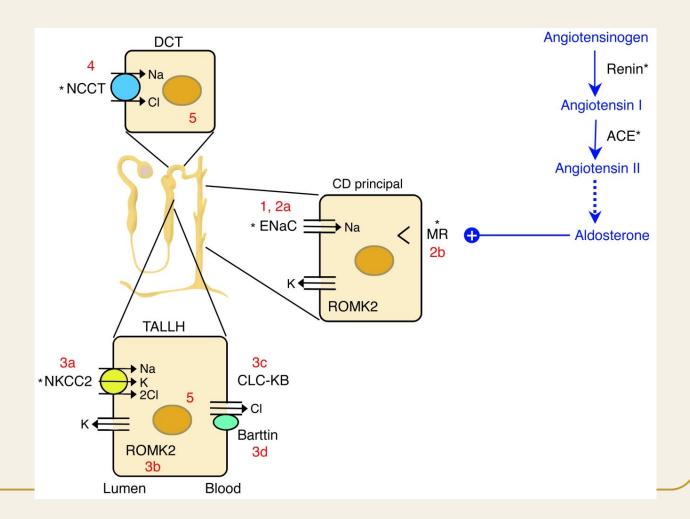
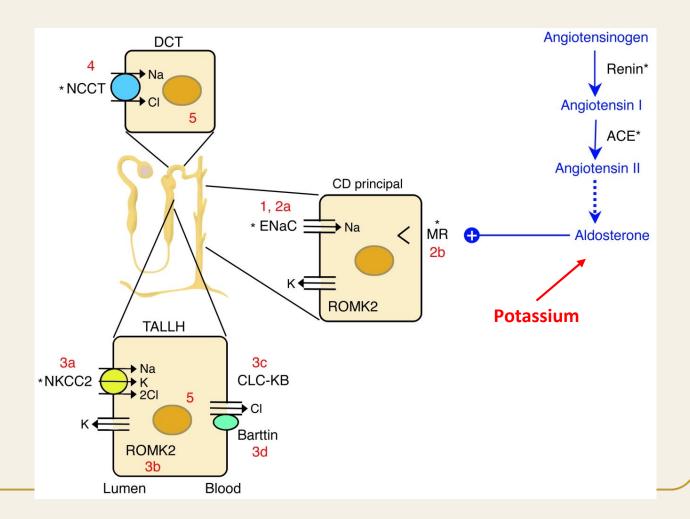
UC San Diego


Hyperaldosteronism: An underrecognized, but prevalent contributor to hypertension

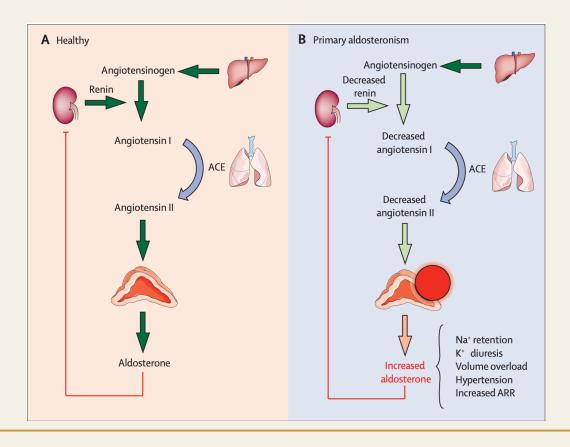
Nandi Shah, MD Division of Endocrinology UC San Diego


Learning Objectives

- 1. Review the regulation and actions of aldosterone
- 2. Recognize the high prevalence of underdiagnosed aldosteronism
- 3. Show that hyperaldosteronism contributes to a large portion of "essential" hypertension
- 4. Re-define primary aldosteronism (PA) from a categorical disease to a syndrome across a continuum of severity
- 5. Review diagnostics and management of overt, primary hyperaldosteronism


Renin-dependent aldosteronism

UC San Diego


UC San Diego

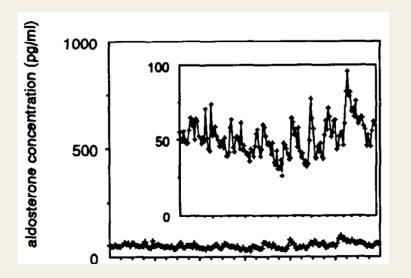
Renin-independent aldosteronism

Jerome Conn, MD

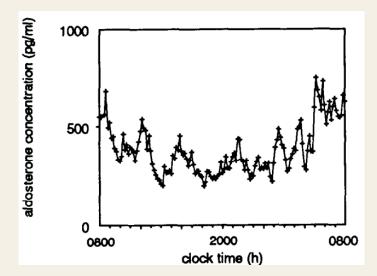
Renin-independent aldosteronism

MR is also expressed in myocardium, and vascular endothelium

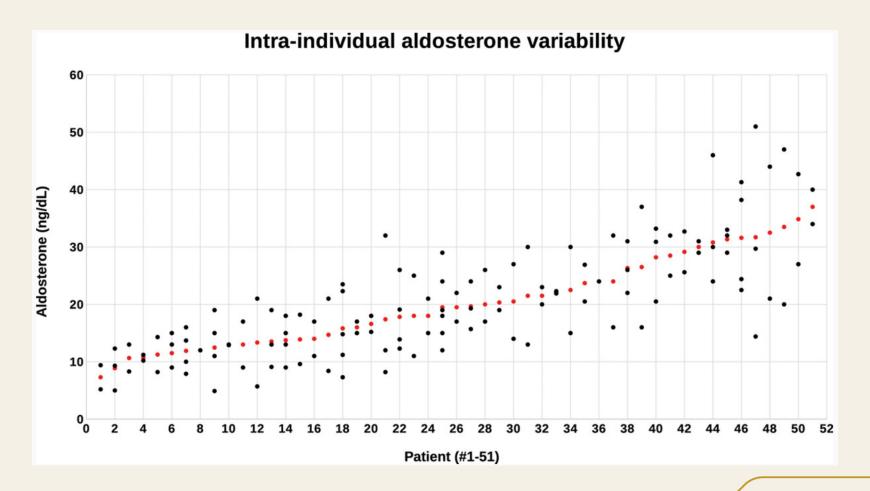
When already sodium/volume expanded, aldosterone-mediated mineralocorticoid activation is pathological and induces cardiovascular injury


Definition of primary hyperaldosteronism

- Inappropriate, Relatively non-suppressible, Renin independent aldosterone production
 - Results in excessive activation of the renal mineralocorticoid receptor (MR) & vicious cycle of volume expansion
 - => can increase BP, increases K+ /H+ excretion, increases risk for CV disease independent of BP (extra-renal MR)
- Hallmark Biochemical Diagnosis:
 - Suppression of Renin
 - Inappropriate/Dysregulated Production of Aldosterone



Variability of Aldosterone Production


Aldosterone release in normal subject on high sodium diet

Aldosterone release in primary hyperaldosteronism

LC-MS Aldosterone Assays

- Current threshold values for primary aldosteronism diagnostic testing are based on measuring aldosterone using immunoassays
- Quantification of PAC by LC-MS assays yields lower values
- Median serum $PAC_{LC-MS/MS}$ was **27.8% lower** (P < 0.05) than plasma PAC_{RIA} in 164 pairs of fludrocortisone suppression testing samples

Prevalence of primary aldosteronism

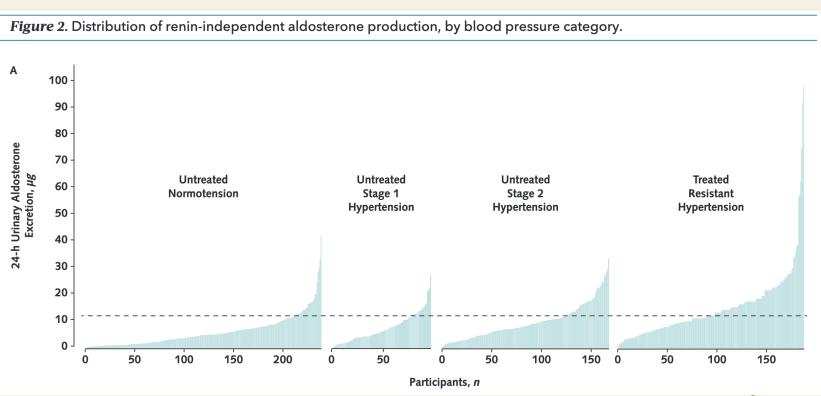
	Prevalence of primary aldosteronism confirmed by suppression testing
Hypertension in a primary care setting	
Buffolo et al (2017) ¹⁵	5·9% (range 3·2–12·7)
Hypertension in people referred to a referral centre	
Buffolo et al (2017) ¹⁵	7·2% (range 0·7–21·9)
Stage 1 hypertension	
Monticone et al (2017) ¹⁶	44/1133 (3.9%)
Rossi et al (2006) ¹²	32/484 (6.6%)
Brown et al (2020) ¹³	15·7% (95% CI 8·6-27·0)
Stage 2 hypertension	
Monticone et al (2017) ¹⁶	40/413 (9·7%)
Rossi et al (2006) ¹²	54/349 (15.5%)
Brown et al (2020) ¹³	21·6% (95% CI 16·9–22·9)
Stage 3 hypertension	
Monticone et al (2017) ¹⁶	15/126 (11-9%)
Rossi et al (2006)12	29/154 (19·0%)

Stage 1 HTN: $130-139/80-89 \rightarrow 5\%$

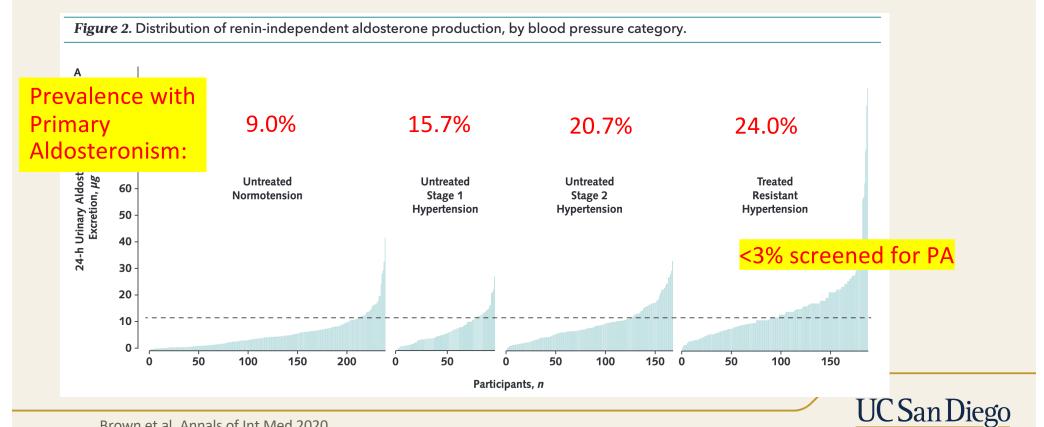
Stage 2 HTN: 140-179/90-109 → **10-15%**

Stage 3 HTN: >180/110 → **12-19%**

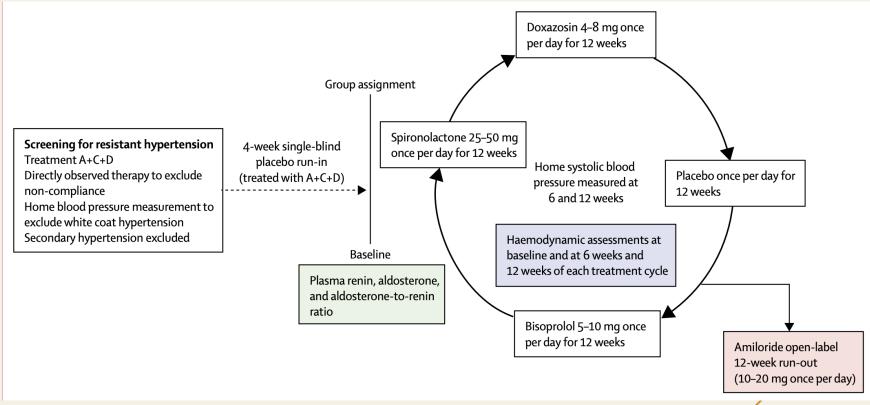
UC San Diego


Prevalence of primary aldosteronism

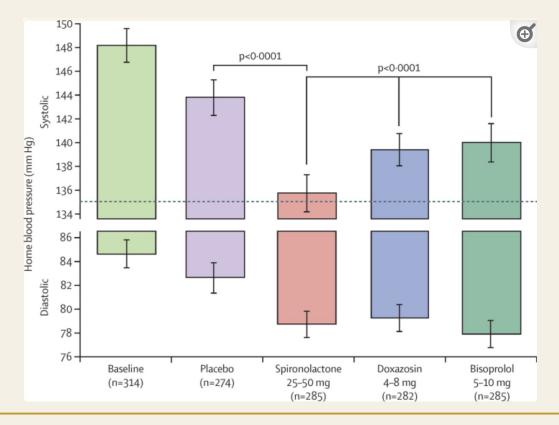
	Prevalence of primary aldosteronism confirmed by suppression testing		
Hypertension in a primary care setting			
Buffolo et al (2017) ¹⁵	5·9% (range 3·2–12·7)		
Hypertension in people referred to a referral centre			
Buffolo et al (2017) ¹⁵	7·2% (range 0·7–21·9)		
Stage 1 hypertension			
Monticone et al (2017) ¹⁶	44/1133 (3.9%)		
Rossi et al (2006) ¹²	32/484 (6.6%)		
Brown et al (2020) ¹³	15·7% (95% CI 8·6–27·0)		
Stage 2 hypertension			
Monticone et al (2017) ¹⁶	40/413 (9.7%)		
Rossi et al (2006)12	54/349 (15·5%)		
Brown et al (2020) ¹³	21·6% (95% CI 16·9–22·9)		
Stage 3 hypertension			
Monticone et al (2017) ¹⁶	15/126 (11-9%)		
Rossi et al (2006)12	29/154 (19·0%)		


Resistant hypertension		
Calhoun et al (2002) ¹⁷	18/88 (20.5%)	
Douma et al (2008) ¹⁸	182/1616 (11-3%)	
Parasiliti-Caprino et al (2020) ¹⁹	32/110 (29·1%)	
Brown et al (2020) ¹³	22·0% (95% CI 17·2–26·8)	
Hypertension and hypokalaemia		
Burello et al (2020) ²⁰	226/804 (28·1%)	
Adrenal incidentaloma		
Mantero et al (2000) ²¹	16/1004 (1.6%)	
Li et al (2017) ²²	82/1941 (4-2%)	
Hypertension and atrial fibrillation		~20-30%
Seccia et al (2020) ²³	31/73 (42·5%)	20-30/0
Hypertension and diabetes mellitus		
Murase et al (2013) ²⁴	14/124 (11-3%)	
Hu et al (2020) ²⁵	49/256	and fam DA
Data are n/N (%), median (range), or median		eened for PA
Data are 11,18 (70), median (range), or median	1 (33% Ci).	

Prevalence of Overt Primary Hyperaldosteronism



Prevalence of Overt Primary Hyperaldosteronism


Brown et al. Annals of Int Med 2020

Pathway-2: best 4th agent to add for resistant hypertension



Pathway-2: best 4th drug is spironolactone

Spironolactone works best with renin-independent aldosteronism

Prevalence of Hyperaldosteronism

- Overt, "classic" primary hyperaldosteronism has a high and mostly under-diagnosed prevalence
- Even in patients who do not meet "classic" primary hyperaldosteronism diagnostic thresholds:
 - There is a continuum of renin-independent aldosterone production that contributes to HTN, ranging from mild to severe
 - These patients respond preferentially to MRA

Screening Guidelines for Hyperaldosteronism (JCEM, 2016 clinical practice guidelines)

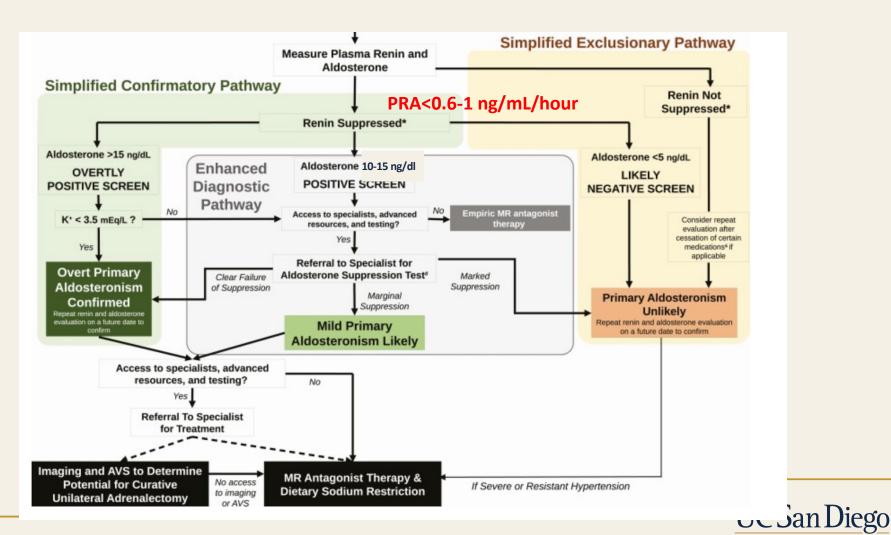
Sustained blood pressure > 150/100

+

- Uncontrolled HTN on 3 antihypertensives, including a diuretic
- Controlled HTN on 4+ antihypertensives
- Spontaneous or diuretic induced hypokalemia
- Adrenal incidentaloma
- Sleep apnea
- Family history of early onset HTN or CVA (<40 years)
- First degree relative with primary aldosteronism

Liberalized Indications to Screen for Primary Aldosteronism

Anyone with:


- 1) Severe or Resistant Hypertension or
- 2) Any spontaneous hypokalemia

Regardless of BP, HTN + adrenal mass or sleep apnea, or, suggestive family history

Comorbidities in Primary Aldosteronism

- Independent of blood pressure, increased organ damage
 - LVH, cardiac fibrosis, renal hyperfiltration, albuminuria, and glomerulosclerosis
- Higher incidence of stroke, myocardial infarction, HF, Afib, and CKD than in patients with essential hypertension and similar blood pressure
- Associated with worsening of OSA, insulin resistance, hypercalciuria causing secondary hyperparathyroidism, and all cause mortality

Drugs & conditions that interfere with ARR

FALSE POSITIVE SCREENING TEST			FALSE NEGATIVE SCREENING TEST Anti-Hypertensive Drugs that Frequently Cause False-negative ARR°				
Anti-Hypertensive Drugs that Frequently Cause False-positive ARR ^c							
	Renin	Aldo	ARR		Renin	Aldo	ARR
Beta-Blockers	$\downarrow\downarrow$	\downarrow	↑	MRAs and ENaC blockers	$\uparrow \uparrow$	↑	\downarrow
Clonidine/Alpha-Methyl Dopa	$\downarrow\downarrow$	\downarrow	↑	Thiazides and Loop Diuretics	ii		+
Aliskirena	$\downarrow\downarrow$	\downarrow	↑	Anti-Hypertensive Drugs that May Cause False-negative ARR			ARR
Other Conditions				ACE-Is, ARBs and Aliskirenb	↑	\downarrow	\downarrow
Advancing age/reduced renal function	$\downarrow\downarrow$	\downarrow	\uparrow	Other Conditions			
FHH	$\downarrow\downarrow$	$\downarrow \longleftrightarrow$	1	Hypokalemia	\leftrightarrow	\downarrow	\downarrow
Women under estrogen contraceptive agents ^b	\downarrow	↑	\uparrow	Concomitant Malignant or RVH	$\uparrow \uparrow$	↑	\downarrow
Anti-inflammatory drugs	$\downarrow\downarrow$	\downarrow	↑	Pregnancy	$\uparrow \uparrow$	↑	\downarrow

Superiority of Surgical > Medical Treatment

Surgery may be more effective at:

- Controlling blood pressure
- Reducing number of hypertensive drugs
- Reversing left ventricular hypertrophy
- Reducing the risk of atrial fibrillation
- Reducing CKD
- Normalizing quality of life
- Lowering long term mortality

Katabami J Hypertens 2019 Rossi Hypertension 2013 Rossi Hypertension 2018 Hundemer Hypertension 2018 Ahmed JCEM 2011

Chen J Endoc Soc 2019

Medical therapy for Hyperaldosteronism

Compound	Mechanism of action	Starting dose per day	Application schedule	Typical side-effects
Spironolactone	Competitive mineralocorticoid receptor antagonist (also a progesterone receptor agonist and an androgen receptor antagonist)	12·5–25 mg	Once a day	In males, gynecomastia and impotency; in females, menstrual irregularities; in both sexes, hyperkalaemia
Eplerenone	Competitive mineralocorticoid receptor antagonist	50 mg	Twice a day	Hyperkalaemia
Amiloride	Epithelial sodium channel blocker	5–20 mg	Twice a day	Hyperkalaemia, nausea, stomach pain, and loss of appetite

Treatment goals:

- 1. Normalize BP and serum potassium
- 2. Un-suppress renin

Summary of Key Points

- Primary aldosteronism is highly prevalent and underdiagnosed
- Hyperaldosteronism contributes to a large portion of "essential" hypertension
- Primary aldosteronism (PA) is not a categorical disease, but rather a syndrome across a continuum of severity
- Diagnostics and management of overt, primary hyperaldosteronism including screening, confirmatory testing, imaging, AVS, surgical & medical therapy