The Role of Surgeons in the Current Era of Molecular Therapy

> Mark Onaitis MD Professor of Surgery Sheri Kelts Chair, Cardiothoracic Surgery University of California, San Diego

An exciting multidisciplinary landscape

- Multidisciplinary care of cancer patients is increasingly essential
- Molecular testing and PD-L1 status will increasingly be used to make *a priori* surgical treatment decisions

What are we trying to achieve?

- Perfect oncologic result
 - Staging: as many lymph nodes assessed as possible
 - Negative margins with no tumor left
- Minimal physiologic result
 - Sparing lung
 - Segmentectomy for selected patients
 - Minimizing pain and suffering
 - Robotic surgery

IASLC 8th Edition Staging Proposals

Case

 77yo lady with large LUL lesion found on chest CT for pneumonia. She is active and can easily walk up 2 flights of stairs. Pulmonology saw her and diagnosed squamous cell cancer on bronchoscopic biopsy. EBUS-guided biopsies of 4L, 4R, and 7 were negative. PDL-1 TPS was 3%.

Induction chemoimmunotherapy

- She underwent 3 cycles of cisplatinbased chemotherapy along with pembrolizumab, which she tolerated well. We performed a robotic left upper lobectomy with focal chest wall resection of intercostal muscle.
- Path: ypT3N2 (2 level 5 nodes positive)

Another case

 75yo man with clinical stage II LLL squamous tumor. He is healthy and able to tolerate 4 METS. PDL-1 TPS 30%

Induction Chemo/IO

 He received 3 cycles of carbo/pemetrexed and pembrolizumab, which he tolerated well. We performed a robotic L lower lobectomy, and he had a complete response.

Basic NSCLC Treatment Strategies

IA & small IB Resection ± adjuvant treatment	II and non-N2 IIIA Resection + adjuvant treatment	IIIA N2 Neoadjuvant treatment + resection, resection + adjuvant, definitive CRT	IIIB/C Definitive chemotherapy/RT + I/O
--	--	--	--

NCCN Guidelines[®] for Non-Small Cell Lung Cancer (Version 3.2022). © 2022 National Comprehensive Cancer Network, Inc. To view the most recent and complete version of the NCCN Guidelines, g Postmus, et al. Ann Oncol 2017

Outline

- Role of minimally-invasive techniques
- Role of sublobar resection
- Role of adjuvant/neoadjuvant therapy in surgical patients

VATS/Minimally-invasive Definition

- Absence of rib spreading
- Visualization by camera

Importance of minimally-invasive resection

- Less pain
- Decreased LOS
- Earlier return to work
- Better tolerance of adjuvant therapy

Importance of Minimally-Invasive Approach

STS-Medicare data

- Linked STS database to Medicare to explore long-term outcomes
- 14286 stage IA patients

pairs)

- 1654 segmentectomy, 12632 lobectomy
- 2 analyses: Cox survival model and propensity matched groups (1654

Procedure Lobectomy Segmentectomy	1.00 1.10 (0.94,1.28)	0.2361	1.00 1.04 (0.89,1.20)	0.6374
Approach Open VATS	1.00 0.77 (0.71,0.83)	<.0001	1.00 0.86 (0.80,0.94)	0.0006

Propensity matched data. 2002–2015.

CALGB 140503

ESTABLISHED IN 1812

FEBRUARY 9, 2023

VOL. 388 NO. 6

Lobar or Sublobar Resection for Peripheral Stage IA Non–Small-Cell Lung Cancer

Nasser Altorki, M.D., Xiaofei Wang, Ph.D, David Kozono, M.D., Ph.D., Colleen Watt, B.S., Rodney Landrenau, M.D., Dennis Wigle, M.D., Ph.D., Jeffrey Port, M.D., David R. Jones, M.D., Massimo Conti, M.D., Ahmad S. Ashrafi, M.D., Moishe Liberman, M.D., Ph.D., Kazuhiro Yasufuku, M.D., Ph.D., Stephen Yang, M.D., John D. Mitchell, M.D., Harvey Pass, M.D., Robert Keenan, M.D., Thomas Bauer, M.D., Daniel Miller, M.D., Leslie J. Kohman, M.D., Thomas E. Stinchcombe, M.D., and Everett Vokes, M.D.

CALCB 140503

- T1aN0 patients
- Outer third of lung
- Intraoperative confirmation of NO status

What about higher stages?

Adjuvant Chemotherapy

LACE (N =	: 4,584)	Die Despite Chemo	Alive Du Surge	ue to ery	Alive Due to Chemo)
n = 1,371	Stage IB HR = 0.92 5-y risk 36%	33		64	3	
	Stage II					
n = 1,616	HR = 0.83 5-y risk 61% Stage III	51		39	10	
n = 1,247	HR = 0.83 5-y risk 74%	61		26	13	
Note: 6th TNN	I edition staging was	used.				

Low rates of adjuvant therapy: VIOLET

Outcome	Randomised to VATS (n=247)	Randomised to open surgery (n=255)	HR (95% CI)	P value	
Received adjuvant treatment	34/216 (15.7%)	39/216 (18.1%)			
Received adjuvant treatment	28/55 (50 08/)	28/61 (45 08/)			
(eligible subset ^a)	28/55 (50.9%)	28/01 (45.9%)			
Time to uptake of adjuvant				0.716	
treatment (months)	-	-	HR=0.90 (0.50, 1.61)	0.710	
Time to uptake of adjuvant					
treatment (eligible subset a)	11.0 (2.1, -)	- (2.0, -)	HR=1.12 (0.62, 2.02)	0.716	
(months)					

Data are n/N (%). Analyses are adjusted for operating surgeon.

a Eligible if i) N1-2 disease and M0 disease after surgery, or ii) T2b to 4, N0 and M0 after surgery.

Median (IQR) time to adjuvant treatment (months) for eligible:

Open: n=28, Median= 1.89, IQR=(1.68, 2.43) VATS: n=28, Median= 2.07, IQR=(1.63, 2.89)

Presented By: Professor Eric Lim | Royal Brompton Hospital, London, UK **#ASCO21** | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

More bad news

Results

Rates of Guideline-Concordant Surgery and Adjuvant Chemotherapy in the U.S. ALCHEMIST Study (ALLIANCE)

Presenter: Kenneth L. Kehl, MD, MPH Dana-Farber Cancer Institute United States Anatomic surgical resection
95.2%

Adequate lymph node dissection
53.4%

Any adjuvant chemotherapy
57.1%

Any cisplatin-based adjuvant chemotherapy
34.1%

At least four cycles of adjuvant chemotherapy
43.7%

No association between socioeconomic factors and care process outcomes

 IASLC
 2021 World Conference on Lung Cancer

 SEPTEMBER 8 - 14, 2021 I WORLDWIDE VIRTUAL EVENT

IASLC 2021 World Conference on Lung Cancer

Ways to Enhance Anti-Tumor Immunity

Current Immune Checkpoint Inhibitors

Drug	Mechanism
Ipilimumab	Anti-CTLA-4
Nivolumab	
Pembrolizumab	Anti-PD-1
Cemiplimab-rwlc	
Atezolizumab	
Avelumab	Anti-PD-L1
Durvalumab	

Mutational Burden and Immunotherapy Response

• Tumors with higher mutational burden tend to be more responsive to immunotherapy

Alexandrov LB et al, Nature, 201

Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry

Annals of Oncology 30: 1321-1328, 2019

J. Mazieres^{1*}, A. Drilon², A. Lusque³, L. Mhanna¹, A. B. Cortot⁴, L. Mezquita⁵, A. A. Thai⁶, C. Mascaux⁷, S. Couraud⁸, R. Veillon⁹, M. Van den Heuvel¹⁰, J. Neal¹¹, N. Peled¹², M. Früh¹³, T. L. Ng¹⁴, V. Gounant¹⁵, S. Popat¹⁶, J. Diebold¹⁷, J. Sabari², V. W. Zhu¹⁸, S. I. Rothschild¹⁹, P. Bironzo²⁰, A. Martinez-Marti²¹, A. Curioni-Fontecedro²², R. Rosell^{23,24}, M. Lattuca-Truc²⁵, M. Wiesweg²⁶, B. Besse⁵, B. Solomon⁶, F. Barlesi⁷, R. D. Schouten¹⁰, H. Wakelee¹¹, D. R. Camidge¹⁴, G. Zalcman¹⁵, S. Novello²⁰, S. I. Ou¹⁸, J. Milia¹ & O. Gautschi²⁷

Adaura: adjuvant osimertinib

Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer

Yi-Long Wu, M.D., Masahiro Tsuboi, M.D., Jie He, M.D., Thomas John, Ph.D., Christian Grohe, M.D.,
Margarita Majem, M.D., Jonathan W. Goldman, M.D., Konstantin Laktionov, Ph.D., Sang-We Kim, M.D., Ph.D.,
Terufumi Kato, M.D., Huu-Vinh Vu, M.D., Ph.D., Shun Lu, M.D., Kye-Young Lee, M.D., Ph.D.,
Charuwan Akewanlop, M.D., Chong-Jen Yu, M.D., Ph.D., Filippo de Marinis, M.D., Laura Bonanno, M.D.,
Manuel Domine, M.D., Ph.D., Frances A. Shepherd, M.D., Lingmin Zeng, Ph.D., Rachel Hodge, M.Sc.,
Ajlan Atasoy, M.D., Yuri Rukazenkov, M.D., Ph.D., and Roy S. Herbst, M.D., Ph.D., for the ADAURA Investigators*

Adaura

Adjuvant Immunotherapy in NSCLC? IMpower010: study design

Completely resected stage IB-IIIA NSCLC per UICC/AJCC v7

- Stage IB tumors ≥4 cm
- ECOG 0-1
- Lobectomy/pneumonectomy
- Tumor tissue for PD-L1 analysis

Stratification factors

- Male/female
- Stage (IB vs II vs IIIA)
- Histology
- PD-L1 tumor expression status^a: TC2/3 and any IC vs TC0/1 and IC2/3 vs TC0/1 and IC0/1

Primary endpoints

- Investigator-assessed DFS tested hierarchically:
 - PD-L1 TC ≥1% (per SP263) stage II-IIIA population
 - All-randomized stage II-IIIA population
 - ITT population (stage IB-IIIA)

Key secondary endpoints

- · OS in ITT population
- DFS in PD-L1 TC ≥50% (per SP263) stage II-IIIA population
- 3-y and 5-y DFS in all 3 populations

Felip E, et al. Lancet 2021;398:1344-1357.

Both arms included observation and regular scans for disease recurrence on the same schedule. ECOG, Eastern Cooperative Oncology Group; IC, tumor-infiltrating immune cells; ITT, intent to treat; TC, tumor cells. * Per SP142 assay.

Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial

Enriqueta Felip, Nasser Altorki, Caicun Zhou, Tibor Csőszi, Ihor Vynnychenko, Oleksandr Goloborodko, Alexander Luft, Andrey Akopov, Alex Martinez-Marti, Hirotsugu Kenmotsu, Yuh-Min Chen, Antonio Chella, Shunichi Sugawara, David Voong, Fan Wu, Jing Yi, Yu Deng, Mark McCleland, Elizabeth Bennett, Barbara Gitlitz, Heather Wakelee, for the IMpower010 Investigators*

IMpower010: DFS in the PD-L1 TC ≥1%^a stage II-IIIA population (primary endpoint)

Clinical cutoff: January 21, 2021. CI, confidence interval; HR, hazard ratio; NE, not evaluable. ^a Per SP263 assay. ^b Stratified log-rank. ^c Crossed the significance boundary for DFS.

IMpower010: early OS data at interim DFS analysis

• OS data were immature at this pre-planned DFS interim analysis

Felip E, et al. Lancet 2021;398:1344-1357.

- OS in the ITT population was not formally tested
- A trend toward OS improvement with atezolizumab was seen in the PD-L1 TC ≥1% stage II-IIIA population

IMpower010: immune-mediated AEs^a

imAEs occuring in ≥1% of patients

	Atezoliz (n=4	zumab 95)	BSC (n=495)		
n (%)	Any grade	Grade 3-4	Any grade	Grade 3-4	
Any immune-mediated AEs	256 (51.7) ^b	39 (7.9%)	47 (9.5)	5 (0.6)	
Rash	91 (18.4)	7 (1.4)	11 (2.2)	0	
Hepatitis (diagnosis and laboratory abnormalities)	86 (17.4)	20 (4.0)	22 (4.4)	1 (0.2)	
Hepatitis (laboratory abnormalities)	81 (16.4)	16 (3.2)	21 (4.2)	1 (0.2)	
Hepatitis (diagnosis)	7 (1.4)	4 (0.8)	1 (0.2)	0	
Hypothyroidism	86 (17.4)	0	3 (0.6)	0	
Hyperthyroidism	32 (6.5)	2 (0.4)	4 (0.8)	0	
Pneumonitis	19 (3.8) ^c	4 (0.8)	3 (0.6)	0	
Infusion-related reaction	7 (1.4)	1 (0.2)	0	0	
Adrenal insufficiency	6 (1.2)	2 (0.4)	0	0	

Felip E, et al. Lancet 2021;398:1344-1357.

Clinical cutoff: January 21, 2021. ^a Data are from the safety population (all randomized patients who received \geq 1 atezolizumab dose or for BSC, had \geq 1 post-baseline assessment). ^b Includes 2 (0.4%) Grade 5 events. ^c Includes 1 (0.2%) Grade 5 event.

imAEs occuring in <1% of patients

	Atezoli (n=4	izumab 495)	BSC (n=495)		
n (%)	Any Grade	Grade 3-4	Any grade	Grade 3-4	
Meningoencephalitis	4 (0.8)	3 (0.6)	0	0	
Colitis	4 (0.8)	2 (0.4)	1 (0.2)	0	
Diabetes mellitus	4 (0.8)	0	1 (0.2)	0	
Myositis (myositis and rhabdomyolysis)	4 (0.8)	0	1 (0.2)	0	
Pancreatitis	2 (0.4)	1 (0.2)	1 (0.2)	1 (0.2)	
Encephalitis	2 (0.4)	2 (0.4)	0	0	
Severe cutaneous adverse reaction	2 (0.4)	0	0	0	
Autoimmune hemolytic anemia	2 (0.4)	0	0	0	
Myocarditis	2 (0.4) ^c	0	0	0	
Meningitis	2 (0.4)	1 (0.2)	0	0	
Guillain-Barre syndrome	1 (0.2)	1 (0.2)	0	0	
Ocular inflammatory toxicity	1 (0.2)	0	1 (0.2)	1 (0.2)	
Hypophysitis	1 (0.2)	0	0	0	
Nephritis	1 (0.2)	0	0	0	
Vasculitis	0	0	1 (0.2)	1 (0.2)	

DFS by PD-L1 status^a

All-randomised stage II-IIIA population (with and without known EGFR/ALK+ disease)

Clinical cutoff: 21 January 2021. * Per SP263 assay.

^b Stratified for all patients and PD-L1 TC ≥1%; unstratified for all other subgroups. ^c DFS analyses in the PD-L1 TC <1% and TC 1-49% subgroups were exploratory. ⁴ 23 patients had unknown PD-L1 status as assessed by SP263. ^e Excluding patients with known EGFR/ALK+ NSCLC. ¹ Unstratified for all subgroups. ^a EGFR/ALK+ exclusion analyses were post hoc. ^b 21 patients had unknown PD-L1 status as assessed by SP263.

THE SOLUTION OF CONTRACT OF CONTRACTO OF CONTRACT OF CONTRACTO OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACTO OF CONTRACT OF CONTRACT OF CONTRACTO OF CONTRACT OF CONTRACTO OF CONTRACT OF CONTRACT.

Felip ESMO2021

Induction Therapy Rationale

- Patients presenting with advanced disease may be understaged
- More likely to experience systemic failure
- More likely to receive full-dose and -cycle chemotherapy when given preoperatively relative to adjuvant delivery
- Those who get "downstaged" have improved survival, lower distant metastasis
- Does not increase surgical complications

Induction Therapy

- Intact tumor vasculature: enhances local chemotherapy delivery, oxygenation augments responsive to radiation therapy
- Radiation field: Smaller and more accurate, improved tolerance
- Tumor downstaging facilitates curative (R0) and parenchymal-sparing resections
- Identifies patients with biologically aggressive disease for whom surgery should be avoided

Induction Nivolumab (Forde et al 2018)

- **Primary endpoints:** Safety and feasibility
- Also evaluated: Tumor pathological response; expression of PD-L1; mutational burden; and mutation-associated, neoantigen-specific T-cell responses

Forde et al. 2018

- Major pathological response occurred in 9/20 resected tumors (45%; 95% CI, 23-68)
- Responses occurred in both PD-L1–positive/–negative tumors

Tumor Mutational Burden

Neoadjuvant immunotherapy: The foundation trials

Study	Stage	N	Backbone	Published	MPR/CPR	Percent undergoing resection
JHU/MSKCC	IB-IIIA	21	Nivo x 2	NEJM 2018	45% / 15%	20 (95%)
NEOSTAR	I-IIIA	23 21	Nivo x 2 Nivo/Ipi	Nat Med 2021	17% / 9% 33% / 29%	39 (89%)
LCMC3	IB-IIIA	101	Atezo x 2	-	19% / 5%	90 (89%)
Weill Cornell	IB-IIIA	60	Durva x 2 Durva + SBRT x 2	Lancet Oncol 2021	6.7% / 0 53% / 31%	52 (87%)
Columbia / MGH	IB-IIIA	30	Atezo + carbo/tax	Lancet Oncol 2020	57% / 33%	29 (97%)
NADIM	IIIA	46	Nivo + carbo/tax	Lancet Oncol 2020	83% / 63%	41 (89%)

Checkmate 816

ORIGINAL ARTICLE

Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer

P.M. Forde, J. Spicer, S. Lu, M. Provencio, T. Mitsudomi, M.M. Awad, E. Felip, S.R. Broderick, J.R. Brahmer, S.J. Swanson, K. Kerr, C. Wang, T.-E. Ciuleanu, G.B. Saylors, F. Tanaka, H. Ito, K.-N. Chen, M. Liberman, E.E. Vokes, J.M. Taube, C. Dorange, J. Cai, J. Fiore, A. Jarkowski, D. Balli, M. Sausen, D. Pandya, C.Y. Calvet, and N. Girard, for the CheckMate 816 Investigators*

pCR

Α							
			40		12.04 (000) (CI	2 40 55 75)	
			25	Odds ratio	o, 13.94 (99% Cl, P<0.001	3.49–55.75)	
			35-		Difference 21.6		
		lete	30-	24.0	Difference, 21.0		
		d %	25_	(43/179)			
		ပိစ္ထိ	23				
		ons	20-				
		esp Bog	15-				
		s th					
		Pai	10-			2.2	
			5-			(4/179)	
			0				
			Nivo	umab plus Chem	otherapy Ch	emotherapy Alone	
D							
В							
	No. of		Dathologic	al Complete	N	Unweighted Difference	y minus
Subgroup	Patients		Respons	e (95% CI)		Chemotherapy Alone (959	6 CI)
ease.oup		C	hemotherapy	Nivolumab plus			
			alone	chemotherapy			
			(N=179)	(N=179)			
				%		percentage points	
Overall	358	2	2.2 (0.6–5.6)	24.0 (18.0-31.0)			21.8 (15.2 to 28.7)
Age							
<65 yr	176		0 (0-4.3)	26.9 (18.2–37.1)			26.9 (17.8 to 36.7)
≥65 yr	182	4	.2 (1.1–10.3)	20.9 (12.9–31.0)			17.8 (7.3 to 26.8)
Sex	0.5.5			22 7 /15 7 20 0			20.2 (12.6) 20.4
Male	255	4	(.4 (0.5–6.7)	22.7 (15.7-30.9)			20.3 (12.6 to 28.4)
Geographic region	105		(<0.1-10.3)	27.5 (15.9-41.7)			25.5 (12.5 to 59.1)
North America	91	2	2.0 (<0.1-10.6)	22.0 (10.6-37.6)		_	20.0 (6.9 to 34.8)
Europe	66		0 (0-13.7)	24.4 (12.4-40.3)			24.4 (7.4 to 39.3)
Asia	177	3	3.3 (0.7–9.2)	28.2 (19.0-39.0)		— •—	25.0 (14.7 to 35.5)
ECOG performance-status score							
0	241	1	.7 (0.2–6.0)	26.9 (19.1–35.3)			24.9 (16.7 to 33.4)
1	117	3	3.2 (0.4–11.2)	18.2 (9.1–30.9)			15.0 (3.8 to 27.3)
Disease stage at baseline	100			26.2 (16.0. 20.5)			21 4 (0.0 += 22.6)
IB or II	128	4	1.8(1.0-13.3)	26.2 (16.0-38.5)			21.4 (9.0 to 33.6)
Histologic type of tumor	220		.9 (<0.1-4.7)	23.0 (13.0-31.9)			22.1 (14.3 to 30.7)
Squamous	182	4	.2 (1.2-10.4)	25.3 (16.6-35.7)			21.1 (11.0 to 31.4)
Nonsquamous	176		0 (0-4.3)	22.8 (14.7-32.8)			22.8 (14.2 to 32.4)
Smoking status				. ,			
Current or former smoker	318	2	2.5 (0.7–6.4)	25.6 (19.1-33.1)		—	23.1 (15.9 to 30.5)
Never smoked	39		0 (0–16.8)	10.5 (1.3-33.1)		•	10.5 (-7.3 to 31.4)
PD-L1 expression level							
<1%	155	2	2.6 (0.3–9.1)	16.7 (9.2–26.8)			14.1 (4.8 to 24.0)
≥1%	178	2	2.2 (0.3-7.9)	32.6 (23.0-43.3)			30.3 (19.9 to 40.7)
1-49%	98		0(0-7.5)	23.5(12.8-37.5)			23.5 (11.4 to 36.8)
25070 TMB	80	-	1.8 (0.0-10.2)	44.7 (28.0-01.7)			- 40.0 (21.7 to 55.9)
<12.3 mutations/megabase	102	1	.9 (<0.1-10.1)	22.4 (11.8-36.6)			20.6 (8.2 to 34.1)
≥12.3 mutations/megabase	76	2	2.7 (<0.1-14.2)	30.8 (17.0-47.6)			28.1 (11.6 to 43.9)
Type of platinum therapy			,	,,			
Cisplatin	258	2	2.2 (0.5–6.4)	21.8 (14.9-30.1)			19.5 (12.0 to 27.7)
Carboplatin	72		0 (0-10.6)	30.8 (17.0-47.6)			30.8 (14.7 to 46.4)
					-30 -15	0 15 30 45	60
							→
				Chemothera	apy Alone Better	Nivolumab plus Chemothe	arapy Better

Event-free Survival

В							
Subgroup	No. of Patients	Median Event-free Survival (95% CI)		U	Unstratified Hazard Ratio for Disease Progression, Disease Recurrence, or Death (95% CI)		Progression, 95% CI)
		Nivolumab plus chemotherapy (N=179)	Chemotherapy alone (N=179)				
o "	250						0 (0 (0 (5 0 07)
Overall	358	31.6 (30.2–NR)	20.8 (14.0–26.7)				0.63 (0.45–0.87)
Age	170	ND (21 C ND)	20.9 (14.0 ND)				0.57 (0.25, 0.02)
<65 yr	1/6	NR (31.6-NR)	20.8 (14.0-NR)				0.57 (0.35-0.93)
≥65 yr	182	30.2 (23.4–NR)	18.4 (10.6–31.8)				0.70 (0.45–1.08)
Sex	255	20 C (20 0 NID)	160 (128 240)				0 (8 (0 47 0 08)
Male	200	30.6 (20.0-NR)	16.9 (13.8-24.9)				0.68 (0.47-0.98)
Female	103	NR (30.5-NR)	31.8 (13.9–NR)				0.46 (0.22-0.96)
Geographic region	01						0.78 (0.28 1.62)
North America	91	NR (25.1-NR)	NR (12.8-NR)				0.78 (0.38-1.62)
Europe	177	51.0 (15.4-NR)	21.1 (10.2 - NR)				0.80 (0.30-1.77)
Asia	1//	NR (30.2-NR)	16.5 (10.8-22.7)				0.45 (0.29-0.71)
ECOG performance-status score	241	ND (20.2 ND)	22.7 (1C.C. ND)				0 (1 (0 (1 0 01)
0	241	NR (30.2-NR)	22.7 (16.6-NR)				0.61 (0.41-0.91)
I Discourse at localized	11/	30.5 (14.0-NR)	14.0 (9.8–26.2)				0.71 (0.41–1.21)
Disease stage at baseline	107	ND (27.0 ND)					0 87 /0 48 1 56)
IB OF II	127	NR(27.8-NR)	NR (10.8-NR)			-	0.87 (0.48-1.50)
	228	31.6 (26.6–NR)	15.7 (10.8–22.7)		_		0.54 (0.37-0.80)
Histologic type of turnor	100	20 C (20 0 ND)	22.7 (11.5 ND)				0.77 (0.40, 1.00)
Squamous	182	30.6 (20.0-NR)	22.7 (11.3-INK)				0.77 (0.49–1.22)
Nonsquamous	1/0	INK (27.0-INK)	19.0 (13.0-20.2)		-		0.50 (0.32-0.79)
Smoking status	210	21 6 (20 2 ND)	22 4 (15 7 ND)				0.68.(0.480.06)
Current or former smoker	310	51.0 (50.2-NR)	22.4 (15.7 - NR)				0.68 (0.48-0.96)
Never smoked	29	INK (5.0-INK)	10.4 (7.7–20.8)				0.55 (0.15-0.87)
PD-L1 expression level	155	25 1 /14 C ND)	19 4 /12 0 26 2)				0.95 (0.54 1.22)
<1%	155	23.1 (14.0-INR)	10.4 (13.9-20.2)				0.85(0.54 - 1.52)
21/0	1/0		21.1 (11.5-NR)				0.41 (0.24-0.70)
1-49% > 50%	90		20.7 (11.3-INK)	_			0.38 (0.30-1.12)
	00		19.0 (0.2-INK)				0.24 (0.10-0.01)
<12.3 mutations/magabasa	102	20.5 (10.4 ND)	267 (166 ND)		-		0 86 (0 47 1 57)
<12.5 mutations/megabase	102	50.5 (19.4-INK)	20.7 (10.0-INK)			_	0.60(0.47 - 1.57)
Zupo of platinum thoracy	70	NR (14.0-NR)	22.4 (13.4-IVR)	-		-	0.09 (0.33-1.40)
Cisplatin	258	NR (25 1_ND)	20.9 (15.7_NP)				0.71 (0.49-1.03)
Carboplatin	238	ND (20 5 ND)	20.5 (15.7-NK)	-			0.71 (0.45-1.05)
Carbopiatin	12	14K (30.3-14K)	10.0 (1.0-20.7)				0.51 (0.14-0.07)
			0.1	25 0.25	0.50 1.00	2.00 4.00	
Nivolumab plus Chemotherapy Better Chemotherapy Alone Better							

OS

did not cross the boundary for statistical significance (0.0033).

Table 2. Adverse Events.*							
Event	Nivolumab plus (N=	Chemotherapy 176)	Chemotherapy Alone (N=176)				
	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4			
Adverse events of any cause — no. (%)†							
All	163 (92.6)	72 (40.9)	171 (97.2)	77 (43.8)			
Leading to discontinuation of treatment	18 (10.2)	10 (5.7)	20 (11.4)	7 (4.0)			
Serious	30 (17.0)	19 (10.8)	24 (13.6)	17 (9.7)			
Treatment-related adverse events — no. (%)†							
All	145 (82.4)	59 (33.5)	156 (88.6)	65 (36.9)			
Leading to discontinuation of treatment	18 (10.2)	10 (5.7)	17 (9.7)	6 (3.4)			
Serious	21 (11.9)	15 (8.5)	18 (10.2)	14 (8.0)			
Death‡	0	—	3 (1.7)				
Surgery-related adverse events — no./total no. (%)§	62/149 (41.6)	17/149 (11.4)	63/135 (46.7)	20/135 (14.8)			

What does that mean for us? IMPROVED surgical outcomes

Surgical outcomes from the phase 3 CheckMate 816 trial: nivolumab + platinum-doublet chemotherapy vs chemotherapy alone as neoadjuvant treatment for patients with resectable non-small cell lung cancer

ANNUAL MEE

chemo, 126.0-275.0 (stage IB/II) and 134.5-245.5 (stage IIIA); chemo, 150.0-267.0 (stage IB/II) and 147.0-290.0 (stage IIIA).

Confidential: with permission from Dr. Spicer

IMPROVED surgical outcomes

Surgical outcomes from the phase 3 CheckMate 816 trial: nivolumab + platinum-doublet chemotherapy vs chemotherapy alone as neoadjuvant treatment for patients with resectable non-small cell lung cancer

*Patients with all baseline stages of disease and definitive surgery; *Denominator based on patients with definitive surgery; *Thoracoscopic/robotic; #Minimally invasive to thoracotomy

ASCO

12

Confidential: with permission

IMPROVED surgical outcomes

Surgical outcomes from the phase 3 CheckMate 816 trial: nivolumab + platinum-doublet chemotherapy vs chemotherapy alone as neoadjuvant treatment for patients with resectable non-small cell lung cancer

Patients may have had > 1 surgery type. Patient numbers (n/N) for stage IB/II and stage IIIA, respectively, for bilobectomy (NIVO + chemo: 1/55, 2/94; chemo: 2/52, 2/83), sleeve lobectomy (NIVO + chemo: 2/55, 0/94; chemo: 5/52, 5/83), and other (NIVO + chemo: 13/55, 11/94; chemo: 12/52, 9/83). *Patients with all baseline stages of disease with surgery.

14

Confidential: with permission

Future

- Predictors of response: ctDNA, tertiary lymphoid structures
- Macrophage repolarization or inhibition for adenocarcinoma?

• Neutrophil inhibition in squamou cell cancer?

Conclusions

- Neoadjuvant and adjuvant immunotherapy options are expanding
- Neoadjuvant chemo-immunotherapy does not appear to compromise (and may enhance) surgical safety
- We still await mature data on effect of these strategies on overall survival
- Identification of which patients are most likely to benefit and determination of appropriate duration of therapy remain key questions

