UC San Diego Health

Biomarkers in lung cancer: state of the art

Lyudmila Bazhenova, MD Professor of Medicine Lung cancer Unit Leader Director, Hematology Oncology Training Program.

lbazhenova@health.ucsd.edu

@LudaBazhenovaMD

NSCLC: Not One Disease, But Many

Wang et al, Nature Medicine 2021

Treating Patients with Oncogenic drivers with targeted therapy improves overall survival

ROS 1 rearrangement and crizotinib at 6 weeks

Lin et al JTO 2017

NTRK rearrangement and larotrectinib at 2 months

Lassen et al ESMO 2018

5 B

Pitfalls in biomarker testing

- Biomarker testing rates
- Disparities in biomarker testing
- Challenges in ordering correct biomarkers
- Challenges in interpreting biomarkers in lung cancer

Biomarker testing in NSCLC

biopsy collection

• test ordering

Analyticaltest performance

Post analytical

results reportingtreatment decisions

- Multiple steps from diagnosis to treatment
 - operational inefficiencies
 - limited awareness or understanding of biomarker strategies
 - inappropriate use of testing results
 - coverage and payment challenges

UC San Diego Health

Pre analytical

Biomarker testing rates

Retrospective analysis performed at OneOncology, a network of multidisciplinary, research-focused community practices using Flatiron Database

A total of 3,860 patients with aNSCLC were included:

3,221 (83%) patients had \geq 1 biomarker test (*ALK*, *BRAF*, *EGFR*, *KRAS*, *PD-L1* and *ROS-1*)

- 2,045 (63%) patients received NGS with or without other biomarker tests
- 639 (17%) patients did not receive biomarker testing
- Of 1,207 patients with aNSCLC with actionable mutations, 390 (32%) received treatment before receiving their biomarker test results

Figure 2. Testing Rates for All 6 Selected aNSCLC Biomarkersª Over Time

Figure 5. Treatment Strategies Following Biomarker Test Results by Actionable Mutations

VanderWalde et al, ASCO Quality Care Symposium 2021

Impact of clinical practice gaps.

	Step 1	Step 2		S	itep 3	Step 4		Step 5		Step 6	Step 7	
Potential practice gaps	Tissue and/or liquid biopsy not performed	Tissue sufficiency		Insufficient	Tumor load	Physicians not ordering testing Lack of awareness of current	Premature	No results reported (QNS/TNP/	Test	TAT – result not reported within treatment	Targeted treatment not selected despite positive test result	
		Initial biopsy	Rebiopsy	tumor	overestimation	guidelines for NSCLC testing Insurance challenges	initiation	inconclusive rates)	/sensitivity	decision window	Report indicates alternative/no therapy	
Data sources	Medicare claims data SEER data	Medicare claims data Published journals		Medicare claims data Published journals		Medicare clair Published jour Real-time labo	ns data mals vratory data	Medicare cla Real-time lab Published joe	ims ooratory data urnals	Medicare claims data	CMS Claims data (parts A, B and D) Real-time laboratory data Published journals	
Patients available	1000	934		798		784		642		524	503	
% of patients lost	6.6	4.0	0.97	9.6	0	1.7	17.5	0.6	14.5	3.9	4	29.2
Patients advancing	934	798		784		642		524		503	356	
Total patients lost	66	136		14		142		118		21	147	

UC San Diego Health

Testing disparities

- Retrospective cohort study January 2017 October 2020. Flat Iron Electronic database (800 sites of care)
- 14768 patients.
 - 68% white, 8.7 % black/AA, 3.2% Asian.
 11% unknown
 - Black/AA patients are less likely to undergo biomarker testing and less likely to have NGS
 - Reasons are not clear (institutional differences, other SE determinants of health, insurance)

All patients with NSCLC									
	NSCLC overall N=14,768	White N=9,793	Black/AA N=1,288	P-value, White vs Black/AA					
Ever tested	11,297 (76.5%)	7477 (76.4%)	948 (73.6%)	0.03					
Tested prior to first line therapy		6,064 (61.9%)	784 (60.9%)	0.47					
Ever NGS tested	7,185 (48.7%)	4,904 (50.1%)	513 (39.8%)	<0.0001					
NGS tested prior to first line therapy		3,081 (31.5%)	332 (25.8%)	<0.0001					
Patient	s with non-squamo	ous NSCLC							
	Non-squamous N=10,333	White N=6,705	Black/AA N=922	P-value, White vs Black/AA					
Ever tested	8,786 (85.0%)	5,699 (85.0%)	764 (82.9%)	0.09					
Ever tested Tested prior to first line therapy	8,786 (85.0%)	5,699 (85.0%) 4,881 (72.8%)	764 (82.9%) 662 (71.8%)	0.09 0.52					
Ever tested Tested prior to first line therapy Ever NGS tested	8,786 (85.0%) 5,494 (53.2%)	5,699 (85.0%) 4,881 (72.8%) 3,668 (54.7%)	764 (82.9%) 662 (71.8%) 404 (43.8%)	0.09 0.52 <0.0001					

Having support infrastructure is important

- 1286 medical oncologists surveyed. (return rate 38%)
 - Survey took place in 2017
- Mixture of solid and liquid tumors
- 62% affiliated with academic institutions.
- Working or being associated with academic institutions, having on site pathology, **internal genomic testing policies**, and onsite genetic counselors were less likely to report difficulties with obtaining molecular testing

Analytical

Tissue first or liquid first or both

FN rate of ctDNA 20-30%

Guideline-recommended biomarker positivity by sample type Tissue Positive Negative Total cfDNA Positive 48 29 77 Negative 12 205 193 Total 60 222 282

LeighINB, et al. Clin Cancer Res. 2019;25(15):4691-4700. Aggarwal C et al., JAMA Oncology , 2018

DNA vs RNA

14% of tested DNAseq-negative samples were positive by for fusions or rearrangements by RNAseq.

- Lung adenocarcinoma cases lacking an oncogenic activating mutation in BRAF, EGFR, NRAS, KRAS, ERBB2, MAP2K1, MET; amplification of EGFR, ERBB2, FGFR1, MET; fusions in ALK/ RET/ROS, NTRK1/2/3, NRG1, BRAF analyzed by MSK-Fusion panel (RNAseq).
- 1,933 of 2,522 cases were positive for oncogenic drivers using MSK-IMPACT.
- 589 were subjected to sequencing.
 - 232 sequenced
- RNA from the available driver-negative cases (n = 232) was tested using the MSK-Fusion panel.
 - Gene fusions (n = 29), METex14 mutations (n = 6), and EGFRvIII (n = 1) were detected.

Post analytical

Structure-based classification predicts drug response in *EGFR*-mutant NSCLC

Article

Testing is important before initiating 1L IO

IMMUNOTARGET Registry

	EG N=	FR 125	K N=	RAS =271	N	ALK 1=23	B N	RAF I=43	R(N	DS1 =7	
PDL1 Status available	N = 49		N = 95		N = 11		N = 10		N = 5		
PDL1 Status											
Negative	18	36.7%	32	33.7%	4	36.4%	3	30%	0	0%	
Positive (>1%)	31	63.3%	63	66.3%	7	63.6%	7	70%	5	100%	
% of tumor cells											
PDL1 staining <10%	21	55.3%	39	48.8%	5	50%	3	33.3%	0	0%	
≥10%	17	44.7%	41	51.3%	5	50%	6	66.7%	5	100%	
missing	11		15		1		1		0		
% of tumor cells											
PDL1 staining <50%	27	71.1%	54	67.5%	6	60%	4	44.4%	2	40%	
≥50%	11	28.9%	26	32.5%	4	40%	5	55.6%	3	60%	
missing	11		15		1		1		0		
% of tumor cells											
PDL1 positive											
Median	3	.5	1	2.5		7.5		50	Ş	90	
Range		0-90		0-100		0-90		0-90		20-100	
missing	11		15		1		1		0		

Mazieres J,. Ann Oncol. 2019.

Mutation trumps PD-L1

Driver	n	RR	PFS	OS	In	npact (+/-) on PFS	Comments	
					PDL1	Smoking	Nb line	Subtype	
Total		1 9 %	2.8	13.3					Outcome consistent with registration trials for ICI
KRAS	271	26%	3.2	13.5	+	Х	Х	х	Clear benefit across all subgroups
EGFR	125	12%	2.1	10	+	Х	Х	+/- ₍₁₎	Could be considered in PDL1 + after TKIs exhaustion
BRAF	43	24%	3.1	13.6	NA	+	Х	Х	Could be considered in smokers
MET	36	16%	3.4	18.4	NA	Х	NA	Х	Could be considered after
HER2	29	7%	2.5	20.3	NA	+	Х	NA	conventionnal treatment
ALK	23	0	2.5	17					
RET	16	6%	2.1	21.3	NA	-	x	NA	Poor outcome. New biomarker needed.
ROS1	7	17%	-	-					

+ : positive impact on PFS

X : non-significant impact on PFS

- : negative impact on PFS

(1) Depending on the mutation subtype, cf. table A7

Word of Caution About Immunotherapy

- Patients with EGFR mutations have traditionally been excluded from all 1L chemo/IO and IO trials with an exception of IMPOWER 150 (had to fail TKI)
- No randomized trials comparing chemo/IO vs EGFR TKI
 - Randomized trials comparing platinum doublet vs 1st and 2nd gen TKI strongly favor TKI
- Response rates and PFS to IO monotherapy is low in 2L trials
- Potential increased toxicity if IO is given before TKI
 - Lisberg et al: ORR of 0% in 10 PD-L1+ (7 w PD-L1>50%), EGFRmutant, TKI naive patients; 1 fatal pneumonitis after TKI
 - Schoenfeld et al: 15% of patients (6 of 41) who received ICI followed by osimertinib developed a severe irAE

Hepatotoxicity associated with ALK TKI after ICI vs TKI Alone

Table 2. Increase in ALT/AST Le	vel with Crizo	otinib after an ICI ver	sus with Crizotinib Alone			
	Patients,	n	Cumulative Incidence of Liver Toxicity			
Increase in ALT/AST Level	Total	Liver Toxicity	Point Estimate, %	(95% CI)	p Value	
Grade 3/4 increase in ALT level					<0.0001	
$ICI \rightarrow TKI$	11	5	45.5	(14.9-72.2)		
ТКІ	442	34	8.1	(5.7-11.0)		
Grade 4 increase in ALT level					<0.0001	
$ICI \rightarrow TKI$	11	3	27.3	(5.8-55.4)		
ТКІ	442	4	0.9	(0.3-2.2)		
Grade 3/4 increase in AST level					< 0.0001	
$ICI \rightarrow TKI$	11	4	36.4	(10.0-64.2)		
ткі	442	14	3.4	(1.9-5.5)		
Grade 4 increase in AST level					< 0.0001	
$ICI \rightarrow TKI$	11	3	27.3	(5.8-55.4)		
ТКІ	442	1	0.2	(0.02-1.3)		

Note: Grading is per the Common Terminology Criteria for Adverse Events, version 4.0.

Point estimate is reported at the time of last observed event.

ALT, alanine transaminase; AST, aspartate transaminase; TKI, tyrosine kinase inhibitor; ICI, immune checkpoint inhibitor; CI, confidence interval.

Challenges in delivering precision medicine

1. Testing is not ordered on all the patients.

 education of physicians and patients, testing pathways, elimination of disparities

2. Testing is not performed due to limited tumor samples

- encourage multiplex testing, core biopsy, multidisciplinary approach to tissue stewardship (establish workflow within you institution that secures adequate tissue at the time of acquisition and before tissue send out), Avoid unnecessary IHC stains
- ctDNA (be aware of false negative rate)

3. Once performed test results are not leading to an appropriate therapy

understand molecular biology, different testing methods (IHC positivity might not mean the same as mutation presence), variants of unknown significance, system improvement in following molecular results (EMR integration).

